DATA+AI

SUMMIT 2022

Near Real Time
Event Analytics

Event Streaming, Delta Live
Tables, and Delta Sharing

Christina Taylor

ORGANIZED BY & databricks Senior Engineer, Special Projects @ Carvana

Background

DATA+AI

2222222222

Microservices Architecture

Develop and test autonomously
Scale independently

Organize by business capability
Separate code base

Distributed CICD

Data isolation

Complexity
Network latency
Information barriers
Service boundaries
Data integrity

Data aggregation

Conflicting Priorities

Building Microservices

“Remember when we
talked about the core
principles behind good
microservices? Strong
cohesion and loose
coupling - with database
integration, we lose both
things.”

— Sam Newman

Change Data Capture

One time snapshot
Ongoing replication
Supports a wide range of commercial

and open source databases
Supports both db and S3 targets
Captures most DDL changes

Open source distributed platform
Log based change data capture
Kafka Connect/Debezium server
Supports a variety of sources/targets
Customization: filters, masking, and
message transformation

System Architecture

|

_.AM—@. 7= —loOker
-0

Insights

Works very well with
big data

Scaling up to
Terabytes

Eventual consistent

Works very well with
stable systems
where there are few
DDL changes

Automation of
extra-connection
attributes in
Terraform is an art

Unsupported DDL
and transaction
blocks can be a
mystery

Schema change is
immediately
reflected in Delta
Lake

Business logic is lost
between service
layer and data layer

Event Streaming

DATA+AI

2222222222

Event streams are sequences of business activities ordered

by time. Data streaming consists of applications publishing

and consuming events. Consumer programs aggregate, filter
and enrich the information in near real time.

IS a specification that describes event data In
a common way.

10

https://cloudevents.io/

ce-source

ce-specversion

ce-type

ce-time

ce-schemaid

ce-schemaversion

Unique identifier of the event

Identifier of the source of the event

Specification version for this event

CloudEvent type constant

Time when the message was sent

Payload schema id (as stored in schema registry)

Payload schema version

abcd-1234-5678

/[company.api.com/1234/topics/order

10

google.cloud.pubsub.topic.vl.orderPlaced

2022-01-01T10:11:22.333Z

100001

0, 1, latest

l

System Architecture

Components

Transactional Outbox
“Scanner”

Message queue
Producers
Consumers

Schema Registry A

Schema Registry DELTA LAKE

E—»§@ kafke

Transactional
Outbox

12

Schema Registry Service

Compatibility

"name": "checkout", I:orvvard
Il-t II: 11 d“, . .

ype recor Forward transitive
1 > ld II:

fields": [Backward

{ k it

Backward transitive
"name": "customer_name", Full

"type": "string",

Full transitive

"aliases": |"name", "“user_name”],
Nelgl=

"doc": "the name customer chose at checkout"

13

Spark Streaming

import za.co.absa.abris.config.{AbrisConfig, FromAvroConfig}

val commonRegistryConfig =

val valueRegistryConfig: Map[String, String] = commonRegistryConfig ++ Map(
"value.schema.naming.strategy" -> "topic.name"
"value.schema.id" -> "latest",

"value.schema.version" -> "latest"

abrisConfig: FromAvroConfig =
AbrisConfig.fromConfluentAvro.downloadReaderSchemaBylLatestVersion
.andTopicNameStrategy(topic)

.usingSchemaRegistry(valueRegistryConfig)

Spark Streaming

def reshapeConfluentKafkaMessage(fromAvroConfig: FromAvroConfig)(df: DataFrame): DataFrame =
df .withColumn("data", from_avro(col("value"), fromAvroConfig))
.select("data.*", "x")

.drop("data", "value")

kafkaTopic.df
.withColumn("headers_struct", map_from_entries(col("headers")))
.withColumn("schemaVersion",col("headers_struct.ce_schemaversion").cast("STRING"))

.withColumm("schemaVersion",col("headers_struct.ce_schemaversion").cast("STRING"))

Streaming Data Platform Ecosystem

lodker

ty
Gy tableau

% = A.: ““5:;;;1;;:,2;"9@ Azure Databricks
-

ﬁlpandas

mlf/)w

Delta Live Tables

Live Tables Pipeline

Raw ingestion

Filtered, cleansed,

augmented

Business level,
aggregated

18

DLT Objectives

Collaborate more Continuous
effectively by execution without
mixing python and complex stream
SQL processing and
recovery logic

Define expectations
and conformance to
business rules

Easily deploy
declarative (“what”)
ETL pipelines with
data flow graph
dashboard

Delta Sharing

DATA+AI

2222222222

Delta Sharing Objectives

Benefits

Share live data without duplication
Support a wide range of recipients
Data security, audit and governance
Scale to massive datasets

ReCipientS can always see a consistent Data Provider Sharing Server Recepient
view as opposed to external tables

21

DATA+AI

SUMMIT 2022

Thank you

Christina Taylor, Special Engineer of Projects
www.linkedin.com/in/ctaylor2

