
Event Streaming, Delta Live
Tables, and Delta Sharing

1

Christina Taylor
Senior Engineer, Special Projects @ Carvana

Near Real Time
Event Analytics

2

Background

Microservices Architecture
A collection of loosely coupled application instances

• Develop and test autonomously
• Scale independently
• Organize by business capability
• Separate code base
• Distributed CICD
• Data isolation

Benefits

3

• Complexity
• Network latency
• Information barriers
• Service boundaries
• Data integrity
• Data aggregation

Criticism

Conflicting Priorities
The challenges of application and data teams

4

This space can be for text content, images, diagrams, or
whatever you need

“Remember when we
talked about the core
principles behind good
microservices? Strong
cohesion and loose
coupling - with database
integration, we lose both
things.”

– Sam Newman

Building Microservices

Change Data Capture

5

CDC
Delivers change data in real time to downstream processes

• One time snapshot
• Ongoing replication
• Supports a wide range of commercial

and open source databases
• Supports both db and S3 targets
• Captures most DDL changes

AWS Database Migration Service

6

• Open source distributed platform
• Log based change data capture
• Kafka Connect/Debezium server
• Supports a variety of sources/targets
• Customization: filters, masking, and

message transformation

Debezium

System Architecture
AWS DMS + Databricks Autoloader for CDC Ingestion

Use this panel for content, images, diagrams, or whatever else you want to include. You can
use the line tool to divide this panel into multiple sections if you want.

7

Insights
When should we (not) use such a CDC system?

Works very well with
big data

Scaling up to
Terabytes

Scale

8

Schema change is
immediately
reflected in Delta
Lake

Business logic is lost
between service
layer and data layer

Evolution
Automation of
extra-connection
attributes in
Terraform is an art

Unsupported DDL
and transaction
blocks can be a
mystery

Deployment
Eventual consistent

Works very well with
stable systems
where there are few
DDL changes

Stability

9

Event Streaming

Event streams are sequences of business activities ordered
by time. Data streaming consists of applications publishing

and consuming events. Consumer programs aggregate, filter
and enrich the information in near real time.

10

CloudEvents is a specification that describes event data in
a common way.

https://cloudevents.io/

11

Header Description Example

ce-id Unique identifier of the event abcd-1234-5678

ce-source Identifier of the source of the event //company.api.com/1234/topics/order

ce-specversion Specification version for this event 1.0

ce-type CloudEvent type constant google.cloud.pubsub.topic.v1.orderPlaced

ce-time Time when the message was sent 2022-01-01T10:11:22.333Z

… further attributes …

ce-schemaid Payload schema id (as stored in schema registry) 100001

ce-schemaversion Payload schema version 0, 1, latest

System Architecture
Establish contract between data producers and consumers

12

This space can be for text content, images, diagrams, or
whatever you need

• Transactional Outbox
• “Scanner”
• Message queue
• Producers
• Consumers
• Schema Registry

Components

Schema Registry Service
A RESTFUL interface for storing and receiving schemas

13

• Forward
• Forward transitive
• Backward
• Backward transitive
• Full
• Full transitive
• None

Compatibility{

 "name": "checkout",

 "type": "record",

 "fields": [

 {

 "name": "customer_name",

 "type": "string",

 },...

]

}

1

2

3

4

5

6

7

8

9

10

11

12

 "aliases": ["name", “user_name”],

 "doc": "the name customer chose at checkout"

Spark Streaming

14

// Deserialize Avro messages

import za.co.absa.abris.config.{AbrisConfig, FromAvroConfig}

val commonRegistryConfig = ...

val valueRegistryConfig: Map[String, String] = commonRegistryConfig ++ Map(

"value.schema.naming.strategy" -> "topic.name"

 "value.schema.id" -> "latest",

 "value.schema.version" -> "latest"

)

val abrisConfig: FromAvroConfig =

 AbrisConfig.fromConfluentAvro.downloadReaderSchemaByLatestVersion

 .andTopicNameStrategy(topic)

 .usingSchemaRegistry(valueRegistryConfig)

1

2

3

4

5

6

7

8

9

10

11

12

Spark Streaming

15

// Reformat Confluent Avro messages

def reshapeConfluentKafkaMessage(fromAvroConfig: FromAvroConfig)(df: DataFrame): DataFrame = {

df.withColumn("data", from_avro(col("value"), fromAvroConfig))

.select("data.*", "*")

.drop("data", "value")

}

// Extract schema information

kafkaTopic.df

.withColumn("headers_struct", map_from_entries(col("headers")))

.withColumn("schemaVersion",col("headers_struct.ce_schemaversion").cast("STRING"))

.withColumm("schemaVersion",col("headers_struct.ce_schemaversion").cast("STRING"))

...

1

2

3

4

5

6

7

8

9

10

11

12

Streaming Data Platform Ecosystem
Deliver and share near real-time insights

Use this panel for content, images, diagrams, or whatever else you want to include. You can
use the line tool to divide this panel into multiple sections if you want.

16

Delta Live Tables

17

Live Tables Pipeline

18

Coordinates data flow between queries

CREATE INCREMENTAL LIVE TABLE bronze_data
TBLPROPERTIES ("quality" = "bronze") AS
SELECT … FROM cloud_files("s3://bronze_bucket/*", "json",
 map("cloudFiles.schemaEvolutionMode", "rescue"))

import dlt
@dlt.create_table(table_properties={“quality”:”silver”})
def silver_data():

return spark.read.csv("s3://silver_bucket/*.csv", header=True)

CREATE LIVE TABLE gold_data (CONSTRAINT pk EXCEPT (id IS NOT NULL) …)
TBLPROPERTIES ("quality" = "gold") AS

SELECT … FROM LIVE.silver_data
JOIN … ON …

Filtered, cleansed,
augmented

Business level,
aggregated

Raw ingestion

DLT Objectives
Simplify delivery of quality data with speed

Collaborate more
effectively by
mixing python and
SQL

Democratization

19

Easily deploy
declarative (“what”)
ETL pipelines with
data flow graph
dashboard

Visibility
Define expectations
and conformance to
business rules

Quality
Continuous
execution without
complex stream
processing and
recovery logic

Always-on

20

Delta Sharing

Delta Sharing Objectives
Securely share large amount of live data

21

• Share live data without duplication
• Support a wide range of recipients
• Data security, audit and governance
• Scale to massive datasets

Benefits
This space can be for text content, images,
diagrams, or whatever you need

Recipients can always see a consistent
view as opposed to external tables

22

Christina Taylor, Special Engineer of Projects
www.linkedin.com/in/ctaylor2

Thank you

