
1

Arthur Delaitre
Data Scientist, Mirakl

Multimodal Deep Learning at Scale -
Learning from Catalogs at Mirakl

Sang-Hoon Yoon
Data Scientist, Mirakl Milton Minervino

Data Scientist, Mirakl

Could not come to present his work :

What is a marketplace ?

2

Marketplace

Seller
1

Seller 2 Seller 3 Seller 4

Marketplace
tenant

Customers

Some Mirakl powered marketplaces :

sells
manages

sell

buy

Marketplace: a platform where multiple providers
sell products and services

Who are we ?

Mirakl is the leader marketplace SaaS platform that empowers both B2B and
B2C organizations to launch and grow an enterprise marketplace at scale.

Our Data Science team aims to develop and industrialize AI features to improve
user experience (automatic categorization and mapping, catalog cleaning,
customer care support, …)

3

�

🚀

Main topics

1. Catalog data
A large and diverse source of data ideal for multimodal learning

2. Catalog use cases
Key use cases: Categorization and Duplicates finding

3. Categorize with multimodal product embeddings
Multimodal product embeddings: product2vec

4. Curate the catalog by removing duplicates
A reliable and coherent product catalog

5. Key takeaways

4

5

Catalog data
A large and diverse source of data ideal for
multimodal learning

What is a catalog in a marketplace ?

In Mirakl, the catalog is a database containing all products data of the marketplace
Multiple sellers can upload their products : Mirakl Catalog Manager ensures that
everything is represented as a single, coherent and reliable catalog.

6

Figures: Mirakl Catalog Management

Key numbers

7

Number of products* Number of categories

Number of sellersNumber of marketplaces

+300 +200 k

310 M 140 k

The kind of data we have

8

Website

Different product data from sellers

Product data contain:
- images (product pictures)
- texts
- tabular data (category, size, storage capacity, …)

Master
product
data

The kind of data we have

9

Title: iPhone 13 6,1” 5G 128 Go Double SIM
Description: This is an iPhone …
Color: Midnight
Dimensions: 146,7 x 71,5 x 7,65 mm
Screen: 6.1” OLED
Processor: A15 Bionic Chip
Camera resolution: 12MP (Ultra Wide)
Weight: 173g
Storage: 128GB

Image

The kind of data we have

10

Title: iPhone 13 6,1” 5G 128 Go Double SIM
Description: Le dernier smartphone d’Apple …
Color: Gold
Dimensions: 146,7 x 71,5 x 7,65 mm
Screen: NaN
Processor: A15 Bionic Chip
Camera resolution: 12MP (Ultra Wide)
Weight: 6,10 ounces
Storage: 128-512 GB

⚠

⚠

⚠
⚠

⚠⚠

Recurring issues with product data

11

The recurring issues:
- Data quality

- Product with missing/ corrupted data
- Sellers may mislabel

- Multiple standards
- Different metric systems
- Different languages
- Heterogeneous category trees

These product data issues prevent marketplaces from proposing a reliable catalog

12

Catalog use cases
Categorization and Duplicates finding

Use case 1 : Product Categorization

13

Some products on the marketplace are assigned to a wrong category

Goal: predict the category with product data such as image, texts, color, size, etc

Sweaters in the wrong
category “footwear”

Consequences:
- Poor UX
- Hidden products

Use case 2 : Product duplicates finding

14

Goal: find the product data referring to the same product to clean the catalog

✓✗

15

Categorization
Categorize with multimodal product embeddings

Categorization model architecture

16

Text Inputs

Embedding

Conv & Dense layers

Concatenation

Product2Vec

Resnet features

Output layer

Figure: Categorization model architecture

Requirements:
● Robustness: stable with missing input
● Multilingual support: 5 languages

What we did:
● Data augmentation with dropout
● Use of multilingual pre-trained embeddings
● Multi-task learning and hierarchical

classification

Ability to compute product2vec embeddings

Dense layers

Multimodal categorization model that
corrects mislabeled product categories

Weight : 20M
parameters

50ms inference time
r5.xlarge

Representation of products: product2vec

17Products represented with product2vec + UMAP

Shoes > shoes for men

Shoes > shoes for kids

Overlapping categories

Same category

Same category

Leveraging the product2vec

18

Achievements with product2vec

- Categorization on very small catalogs
- Similar products detection
- Category embeddings
- Visual attribute prediction

➢ Use product2vec as an input for ML catalog models

19

Engineering considerations

Training challenges

20

Training dataset creation & preprocessing:
- Distributed on multiple clusters
- Dataset size exceeding memory capacity

Images and
Resnet features

Async job

S3

Preprocessing Model
Training

Tabular data & texts

Model registry

21

Why TFRecords ?

- Save texts and images as binary files.
- A Dataset can be composed of

multiple files.
- Allows for optimized data fetch

without having to load everything in
memory.

Machine 1

Machine 2

Machine n Model
training

Training on terabytes of data using TFRecords

files = tf.data.Dataset.from_tensor_slices(filenames)

dataset = files.interleave(
lambda x: tf.data.TFRecordDataset(x,

compression_type="GZIP"),
 cycle_length=len(filenames),
)
dataset = dataset.map(partial(self.read_tfrecord),

num_parallel_calls=8)

dataset = dataset.shuffle(512,
reshuffle_each_iteration=False)

dataset = dataset.repeat()

dataset = dataset.batch(self.batch_size)

dataset = dataset.prefetch(buffer_size=100)

File specification and Dataset creation

Training in less than 3 hours
- For a dataset of ~20 M products
- On a g4dn.8xlarge (single GPU)

Training challenges

22

Training:
- With dataset size exceeding memory capacity
- Use of multi GPU with mirrored strategy from

Tensorflow

Images and
Resnet features

Async job

S3

Preprocessing Model
Training

Model registry

Tabular data & texts

Preparation for inference:
- Convert the model to

ONNX format

Quantization

23

ONNX & ONNX Runtime

ONNX - open standard format defining a common set of computational functions:

● ONNX represents deep learning models in a wide variety of frameworks
● ONNX Runtime provides tools to optimize the ONNX graph
● Dynamic quantization to reduce latency and model size

÷ 4 -60%
Smaller Faster

With ONNX Runtime and dynamic quantization, the use of huge models like transformers (e.g. BERT
models) in production is possible with CPUs

Categorization Demo

24

25

Achievements with categorization model

➢ Mirakl categorizes automatically products into the
right categories

➢ We obtained the cornerstone of catalog ML use cases:
product2vec embeddings

26

Finding duplicate products
A reliable and coherent product catalog

Finding duplicates use case
Goal : find product data from sellers that refer to the same product

27

Name : Tennis laces man
Seller : MODE & SPORT
Brand : Bensimon
Barcode : None
Description : Opt for these
canvases from the cult
brand

Name : BENSIMON Denim canvas
Seller : SPORT ENTERTAINMENT
Brand : Bensimon
Barcode : 3608544890070
Description : Bensimon canvas
sneaker for men, model TOILE
LACET, color blue

Product 3029102 Product 5940304

Notes:
● Catalogs may be very dense: thousands of similar products in a category
● Sellers may describe the same product very differently

Product2vec embeddings are not precise and robust enough for this task

Model architecture

28

Text Inputs 1

Embedding

Recurrent layers

Concatenation

Resnet features 1

Dense layers

Text Inputs 2 Resnet features 2

Diff and mean

Image 1

Dense layers

Image 2

Diff and mean

Convolutional layers*

Dense layers

Output :
- 0 : different products
- 1 : same product

*first layers from a feature extraction
model. It outputs local low level features.

Goal : Take both product data as input, infer whether or not they refer to the same product

Focus on duplicated products search

29

Product 1

Product 2

Product 3

Product 4

Product 5

Product 6

……….

Cannot use product embeddings (not
precise enough, either too many false
positives or no positives at all)

Can use an algorithm that compares
each product low-level data to tell if
they relate to the same product.
Filtering and pairwise comparisons

✓

✗

Product 1 Product 2 Product 3 Product 4 Product 5 Product 6 ………..

Reference set

N
ew

 p
ro

du
ct

s
se

t

Pairwise comparisons = O (n2) problem

➔ We need a robust architecture

30

Engineering considerations

Inference challenges

3131

Model registry

Image + Texts

N rows
N ~ 1B

Filtering

N’ rows
N’ ~ 1M

Pairs of
products

Refined
candidate pairs

of products

Model
inference

Join to retrieve
all data

S3

Production

Results
artifacts

Tabular data

Lightweight ML
model to filter

candidates from
low level data

Filtering step

32

1. Compute basic features on images:
- Histograms
- Texture
- Aspect ratio

Goal : Drastically decrease the number of candidate pairs so that a multimodal deep
learning model can be used on a limited set.

Decision
tree 0

2. Derive some features for pairs of images using vectorized
computing

3. Apply a Decision Tree

- 1M predictions per second

Consequence : From 1B pairs to 1M

Inference challenges

33

33

Model registry

N rows
N ~ 1B

Filtering
small ML
model

N’ rows
N’ ~ 1M

Pairs of
products

Refined
candidate pairs

of products

Model
inference

Join to retrieve
all data

S3

Production

Results
artifacts

Tabular data

Dynamic joins and data
fetches :

- Optimization using
Spark and DataBricks

Image + Texts

34

Spark optimization

Optimize data frames joins:

● Use of spark.sql.autoBroadcastJoinThreshold to tune joins or deactivate it if
needed.

● Carefully partition files and Dataframe, and persist Data On disk only for large
DataFrames (do not forget to unpersist).

Optimize data queries:

● Use of Z-ordering in delta tables to speed up data queries

35

Be careful when using custom UDF, they can
introduce memory leaks

from pyspark import SparkFiles

class Singleton(type):

 _instances = {}

 def __call__(cls, *args, **kwargs):

 if cls not in cls._instances:

 cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)

 return cls._instances[cls]

class CatalogEstimator(metaclass=Singleton):

 model = None

 def __init__(self, remote_model_path):

 File_name = get_file_name(remote_model_path)

 Estimator.model = self._load_model(SparkFiles.get(file_name))

 @staticmethod

 def _load_model(model_path):

 return catalog_model.load_model(model_path)

 @staticmethod

 def predict(remote_model_path, sentence):

 …
spark.sparkContext.addFile("/tmp/model.bin")

@pandas_udf(T.StringType())

def predict_pandas_udf(s: pd.Series) -> pd.Series:

 s = s.apply(lambda x: CatalogEstimator.predict("/tmp/model.bin", x))

 return s

spark_DF.select('id', predict_pandas_udf(col("body")).display())

Tips
- Add a non serializable model into spark

context to predict with Spark UDF/pandas
UDF

- Singleton class avoids loading object at
every UDF call and accelerates executions

Spark optimization

Conclusion - key takeaways

● Multimodal product embeddings are the cornerstone of Machine Learning on
Catalog Data

● Before pulling out the big guns, check if pragmatic and frugal solutions can
resolve your O(n2) problems

● Optimization on Spark and inference time reduction with ONNX are paramount
to scale your pipeline

36

37

Thank you

