
Monitoring and Quality Assurance in
Complex ML Deployments with Assertions

Daniel Kang
Stanford University

1

Errors in ML models lead to downstream
consequences

2

» Errors can have
extreme consequences

» No standard way of
monitoring / quality
assurance

Autonomous vehicles have already
been involved in fatal accidents

Software 1.0 is also deployed in
mission-critical settings!

Important software is monitored
and has rigorous QA
» Assertions
» Unit tests
» Regression tests
» Fuzzing
» …

3

Software powers
medical devices, etc.

This talk:

Abstractions for finding errors in ML
deployments and in labeling pipelines

Our research:
Can we design monitoring / QA methods that work
across the ML deployment stack?

4

Errors in ML models and labels can be
systematic

5

Cars should not flicker in
and out of a video

Labelers consistently miss
certain objects

6

“As the [automated driving system] changed the classification of the
pedestrian several times—alternating between vehicle, bicycle, and
an other — the system was unable to correctly predict the path of the
detected object,” the board’s report states.

Outline

»Motivation

»Model assertions

» Learned observation assertions (LOA)

7

Model assertions in context

8

Model assertions in context

9

Model assertions in context

10

Many users, potentially not the model builders,
can collaboratively add assertions

Model assertions for finding errors and
improving ML models [MLSys ‘20]

11

def flickering(

recent_frames: List[PixelBuf],

recent_outputs: List[BoundingBox]

) -> Float

Model assertion inputs are a
history of inputs and predictions

Model assertions output a severity
score, where a 0 is an abstention

Predictions from different AV sensors should
agree

12

Assertions can be specified in little code

13

def sensor_agreement(lidar_boxes,

camera_boxes):

 failures = 0

 for lidar_box in lidar_boxes:

if no_overlap(lidar_box, camera_boxes):

 failures += 1

 return failures

Specifying model assertions: consistency API

14

Identifier Time
stamp

Attribute 1
(gender)

Attribute 2
(hair color)

1 1 M Brown
1 2 M Black
1 4 F Brown
2 5 M Grey

Transitions cannot happen
too quickly

Attributes with the same
identifier must agree

Model assertions for TV news analytics

Overlapping boxes in the same
scene should agree on attributes

Automatically specified via
consistency assertions

15

Training models via model assertions

16

Set of inputs
that triggered

assertion

Model
retraining

Human-ge
nerated
labels

Agnostic to data type, task, and model!
New data collection API

How should we select data points to label for
active learning?

17

» Many assertions can flag
the same data point

» The same assertion can flag
many data points

» Which points should we
label?

Assertion 1

Assertion 2 Model assertion-based
bandit algorithm

Evaluation setting

» Deployed MAs on real world datasets (more in paper)
» Video analytics

» Self-driving cars

» ECG readings

18

Goals:
Find errors
Retrain models

Metrics:
Precision
mAP

Model assertions can find errors with high
true positive rate

19

Setting Assertion True Positive
Rate

LOC

Video analytics Flickering 96% 18

Video analytics Multibox 100% 14

Video analytics No phantom cars 88% 18

AV LIDAR/camera match 100% 11

Medical ECG classification
shouldn’t vary too quickly

100% 23

Assertion-based AL outperforms baselines

20

Using assertions outperforms uncertainty
and random sampling

Evaluating Model Quality after Retraining:
Qualitative Improvement

21

Best Retrained SSDOriginal SSD

Outline

»Motivation

»Model assertions

» Learned observation assertions (LOA)

22

ML models for perception are exploding

23

Autonomous vehicles, smart cities, …

ML models for perception require data!

24

Labeling vendor (e.g., Scale AI) have millions
in revenue, hundreds of customers!

Training data is rife with errors!

25

Even the best-in-class labeling services
misses critical labels!

ML pipelines require data

26

Critical component for ML deployments!

LOA in context

27

LOA in context

28

Vetting training data is critical for
safety and liability reasons

LOA LOA

Finding errors in labels via ML models

29

Human
annotation

Model
prediction

Model is correct, human label is incorrect

Challenge: models can be unreliable!

30

Human
annotation

Model
prediction

Model is incorrect, human label is correct

How can we specify which model
predictions are likely errors?

31

Inputs to LOA

Application user:

» Features

» Associations

32

System administrator:

» ML model predictions

» Existing labels

LOA example: features

def VolumeFeature(box):

 return box.width * box.height * box.length

def VelocityFeature(box1, box2, time):

 return (box1.center – box2.center) / time

33

LOA example: associations

def Association(box1, box2):

 return overlaps(box1, box2)

34

Organizational resources: ML models

35

ML models can provide information about
potentially missing tracks

Human
annotation

Model
prediction

Challenge: models can be unreliable!

36

Human
annotation

Model
prediction

Model is incorrect, human label is correct

Organizational resources:
existing human labels

37

Existing labels can provide
examples of expected behavior:
» Box volume
» Velocity
» Track lengths
» …

LOA workflow

38

Inputs LOA
internals

Learning feature distributions

39

Use existing labels to learn probabilities of
expected and unexpected values

Finding errors in labels with LOA

40

LOA automatically constructs graphical
model from features

Proposing missing tracks

41

Find differences between labels and model predictions

Unlikely track: inconsistent box volumes

42

Likely track: consistent features

43

Scoring tracks

44

Aggregating
features

Score from feature

Evaluation setting: human labeling errors

Two real autonomous vehicle datasets

» Lyft Level 5 (publicly available)

» Toyota Research Institute (TRI) internal dataset

45

Goals:
Find errors
Without spurious predictions

Metrics:
Recall
Precision

Evaluation setting: human labeling errors

Baseline (model assertions):

» Select model predictions not present in human labels

» Rank randomly or by confidence

LOA:

» Five total features

» <10 LOC per feature

46

LOA identifies errors in human labels in
real-world datasets: Lyft Level 5

47

» Deployed LOA per scene
(5-15s clip)

» Found errors in 70% of the
Lyft validation scenes (via
expert auditor)

Dataset used to train models,
host competitions, cited
hundreds of times!

LOA identifies errors in human labels in
real-world datasets: TRI

48

Missing car

» Labels generated from leading
vendor!

» Recall of 75% for errors on an
exhaustively examined scene
(compared to expert auditor)

LOA can find errors with high precision

49

Evaluation setting: model errors

» Two real autonomous vehicle datasets
» Lyft Level 5 (publicly available)

» Toyota Research Institute (TRI) internal dataset

» Exclude errors found by ad-hoc model assertions

50

LOA can find errors in ML models not found
by model assertions

Excluded model errors
found by model assertions

Outperforms uncertainty
sampling by ~2x!

51

Examples of errors in ML models

52

LOA finds overlapping, but unlikely tracks,
not found by model assertions

Links

» Model assertions paper:
https://ddkang.github.io/papers/2020/ma-sysml20.pdf

» Model assertions code:
https://github.com/stanford-futuredata/omg

» LOA paper:
https://ddkang.github.io/papers/2022/loa-sigmod.pdf

» LOA code: https://github.com/stanford-futuredata/loa

53

https://ddkang.github.io/papers/2020/ma-sysml20.pdf
https://github.com/stanford-futuredata/omg
https://ddkang.github.io/papers/2022/loa-sigmod.pdf
https://github.com/stanford-futuredata/loa

Conclusion

» Errors are rife in both training data and for ML models at
deployment time

» We present model assertions and LOA, two abstractions
for finding errors in ML pipelines

» We need more work for the ML deployment stack beyond
training!

54

ddkang@stanford.e

du

@daniel_d_kang

