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Errors in ML models lead to downstream 
consequences
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» Errors can have 
extreme consequences

» No standard way of 
monitoring / quality 
assurance

Autonomous vehicles have already 
been involved in fatal accidents



Software 1.0 is also deployed in 
mission-critical settings!

Important software is monitored 
and has rigorous QA
» Assertions
» Unit tests
» Regression tests
» Fuzzing
» …
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Software powers 
medical devices, etc. 



This talk:

Abstractions for finding errors in ML 
deployments and in labeling pipelines

Our research:
Can we design monitoring / QA methods that work 
across the ML deployment stack?
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Errors in ML models and labels can be 
systematic
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Cars should not flicker in 
and out of a video

Labelers consistently miss 
certain objects
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“As the [automated driving system] changed the classification of the 
pedestrian several times—alternating between vehicle, bicycle, and 
an other — the system was unable to correctly predict the path of the 
detected object,” the board’s report states.



Outline

»Motivation

»Model assertions

» Learned observation assertions (LOA)
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Model assertions in context
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Model assertions in context
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Model assertions in context
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Many users, potentially not the model builders, 
can collaboratively add assertions



Model assertions for finding errors  and 
improving ML models [MLSys ‘20]
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def flickering(

recent_frames: List[PixelBuf],

recent_outputs: List[BoundingBox]

) -> Float

Model assertion inputs are a 
history of inputs and predictions

Model assertions output a severity 
score, where a 0 is an abstention



Predictions from different AV sensors should 
agree
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Assertions can be specified in little code
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def sensor_agreement(lidar_boxes, 

camera_boxes):

  failures = 0

  for lidar_box in lidar_boxes:

if no_overlap(lidar_box, camera_boxes):

  failures += 1

  return failures



Specifying model assertions: consistency API
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Identifier Time
stamp

Attribute 1 
(gender)

Attribute 2 
(hair color)

1 1 M Brown
1 2 M Black
1 4 F Brown
2 5 M Grey

Transitions cannot happen 
too quickly

Attributes with the same 
identifier must agree



Model assertions for TV news analytics

Overlapping boxes in the same 
scene should agree on attributes

Automatically specified via 
consistency assertions
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Training models via model assertions 
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Set of inputs 
that triggered 

assertion

Model 
retraining

Human-ge
nerated 
labels

Agnostic to data type, task, and model!
New data collection API



How should we select data points to label for 
active learning?
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» Many assertions can flag 
the same data point

» The same assertion can flag 
many data points

» Which points should we 
label?

Assertion 1

Assertion 2 Model assertion-based 
bandit algorithm



Evaluation setting

» Deployed MAs on real world datasets (more in paper)
» Video analytics

» Self-driving cars

» ECG readings
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Goals:
Find errors
Retrain models

Metrics:
Precision
mAP



Model assertions can find errors with high 
true positive rate
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Setting Assertion True Positive 
Rate

LOC

Video analytics Flickering 96% 18

Video analytics Multibox 100% 14

Video analytics No phantom cars 88% 18

AV LIDAR/camera match 100% 11

Medical ECG classification 
shouldn’t vary too quickly

100% 23



Assertion-based AL outperforms baselines
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Using assertions outperforms uncertainty 
and random sampling



Evaluating Model Quality after Retraining:
Qualitative Improvement
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Best Retrained SSDOriginal SSD



Outline

»Motivation

»Model assertions

» Learned observation assertions (LOA)
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ML models for perception are exploding
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Autonomous vehicles, smart cities, … 



ML models for perception require data!
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Labeling vendor (e.g., Scale AI) have millions 
in revenue, hundreds of customers!



Training data is rife with errors!
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Even the best-in-class labeling services 
misses critical labels!



ML pipelines require data
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Critical component for ML deployments!



LOA in context
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LOA in context
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Vetting training data is critical for 
safety and liability reasons

LOA LOA



Finding errors in labels via ML models
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Human 
annotation

Model 
prediction

Model is correct, human label is incorrect



Challenge: models can be unreliable!
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Human 
annotation

Model 
prediction

Model is incorrect, human label is correct



How can we specify which model 
predictions are likely errors?
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Inputs to LOA

Application user:

» Features

» Associations
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System administrator:

» ML model predictions

» Existing labels



LOA example: features

def VolumeFeature(box):

  return box.width * box.height * box.length

def VelocityFeature(box1, box2, time):

  return (box1.center – box2.center) / time
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LOA example: associations

def Association(box1, box2):

  return overlaps(box1, box2)
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Organizational resources: ML models
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ML models can provide information about 
potentially missing tracks

Human 
annotation

Model 
prediction



Challenge: models can be unreliable!
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Human 
annotation

Model 
prediction

Model is incorrect, human label is correct



Organizational resources:
existing human labels
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Existing labels can provide 
examples of  expected behavior:
» Box volume
» Velocity
» Track lengths
» … 



LOA workflow
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Inputs LOA 
internals



Learning feature distributions
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Use existing labels to learn probabilities of 
expected and unexpected values



Finding errors in labels with LOA
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LOA automatically constructs graphical 
model from features



Proposing missing tracks
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Find differences between labels and model predictions



Unlikely track: inconsistent box volumes
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Likely track: consistent features
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Scoring tracks
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Aggregating 
features

Score from feature



Evaluation setting: human labeling errors

Two real autonomous vehicle datasets

» Lyft Level 5 (publicly available)

» Toyota Research Institute (TRI) internal dataset
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Goals:
Find errors
Without spurious predictions

Metrics:
Recall
Precision



Evaluation setting: human labeling errors

Baseline (model assertions):

» Select model predictions not present in human labels

» Rank randomly or by confidence

LOA:

» Five total features

» <10 LOC per feature
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LOA identifies errors in human labels in  
real-world datasets: Lyft Level 5
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» Deployed LOA per scene 
(5-15s clip)

» Found errors in 70% of the 
Lyft validation scenes (via 
expert auditor)

Dataset used to train models, 
host competitions, cited 
hundreds of times!



LOA identifies errors in human labels in  
real-world datasets: TRI
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Missing car

» Labels generated from leading 
vendor!

» Recall of 75% for errors on an 
exhaustively examined scene 
(compared to expert auditor)



LOA can find errors with high precision
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Evaluation setting: model errors

» Two real autonomous vehicle datasets
» Lyft Level 5 (publicly available)

» Toyota Research Institute (TRI) internal dataset

» Exclude errors found by ad-hoc model assertions
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LOA can find errors in ML models not found 
by model assertions

Excluded model errors 
found by model assertions

Outperforms uncertainty 
sampling by ~2x!
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Examples of errors in ML models

52

LOA finds overlapping, but unlikely tracks, 
not found by model assertions



Links

» Model assertions paper: 
https://ddkang.github.io/papers/2020/ma-sysml20.pdf 

» Model assertions code:
https://github.com/stanford-futuredata/omg 

» LOA paper: 
https://ddkang.github.io/papers/2022/loa-sigmod.pdf  

» LOA code: https://github.com/stanford-futuredata/loa 
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https://ddkang.github.io/papers/2020/ma-sysml20.pdf
https://github.com/stanford-futuredata/omg
https://ddkang.github.io/papers/2022/loa-sigmod.pdf
https://github.com/stanford-futuredata/loa


Conclusion

» Errors are rife in both training data and for ML models at 
deployment time

» We present model assertions and LOA, two abstractions 
for finding errors in ML pipelines

» We need more work for the ML deployment stack beyond 
training!
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