

ORGANIZED BY 😂 databricks

Hien Luu Head of ML Platform, DoorDash

Agenda

- Motivation: Objective Function
- MLOps Blueprint
- MLOps Strategy
- DoorDash MLOps Journey
- Summary

Motivation: Objective Function

- Optimize for a successful strategy of applying MLOps @ your company
 - Use DoorDash as a case study

MLOps: ML as an Engineering Discipline

MLOps is important & needed

Similar Journey & Needs

Strategy + Starting Point

DATA+AI SUMMIT 2022

Specific ML Needs

<u>AI Infrastructure Alliance</u> - AI/ML Workflow

<u>AI Infrastructure Alliance</u> - AI/ML Tech. Stack

Maturity Level

Level 4 - Full MLOps Automation

Level 3 – Automated Model Deployment

Level 2 - Automated Training

Level 1 - DevOps Only

Level 0 - No MLOps

Level 2 - CI/CD Pipeline Automation

Level 1 - ML Pipeline Automation

Level O - Manual

Which maturity level?

Maturity Level

Algorithmia – <u>ML in production: a roadmap to success</u>

MLOps Strategy

successful_mlops(use_case, culture, technology, people)

MLOps Strategy

Use Case - identify the game you are playing

Governance

- Banking
- Insurance
- Health care
- Financial
- Self-driving cars

Velocity

- Customer experience
- Personalized marketing
- Voice assistance
- IoT
- Transportation optimization

MLOps Strategy

Culture

MLOps Adoption Pace

- Risk tolerance
 - Effort
- Velocity
 - Customer's pace
- Decision making process
 - Time & effort
- Collaborative
 - Effort

MLOps Blueprint & Best Practices

Technology

MLOps Dependencies

Maturity

- Data infrastructure
- Experimentation infrastructure
- CI/CD
- Compute infrastructure

MLOps Strategy People

- Customers (alignment)
 - Data Scientists, ML Engineers, Data Analysts
- Business teams PM, product owners (impact)
- Your team
 - MLOps experience
 - Size

Align on their needs and MLOps Infra. impact

successful_mlops(use_case, culture, technology, people)

• Use cases

• Logistics, search & recommendation, ads & promotion, fraud, forecasting

Culture

Impact driven, fast moving, favor iterations, collaborative

Technology

• Early adult phase - data warehouse, data lake

• People

• Young Data Scientist teams, a mixed of MLOps experience

• Use cases

Logistics, search & recommendation, ads & promotion, fraud, forecasting

• Culture

• Impact driven, fast moving, favor iterations, collaborative

Technology

Early adult phase – data warehouse, data lake

• People

• Young Data Scientist teams, a mixed of MLOps experience

• Use cases

Logistics, search & recommendation, ads & promotion, fraud, forecasting

Culture

- Impact driven, fast moving, favor iterations, collaborative
- Technology
 - Early adult phase data warehouse, data lake

People

• Young Data Scientist teams, a mixed of MLOps experience

• Use cases

Logistics, search & recommendation, ads & promotion, fraud, forecasting

• Culture

Impact driven, fast moving, favor iterations, collaborative

Technology

- Early adult phase data warehouse, data lake
- People
 - Young Data Scientist teams, a mixed of MLOps experience

- Prediction service w/ fast model deployment (use case, people, culture)
- Model training infrastructure (people, use case)
- ML Observability (people, use case)
 - feature and model prediction quality
- Feature engineering (use case, technology)

- Prediction service w/ fast model deployment (use case, people, culture)
- Model training infrastructure (people, use case)
- ML Observability (people, use case)
 - feature and model prediction quality
- Feature engineering (use case, technology)

- Prediction service w/ fast model deployment (use case, people, culture)
- Model training infrastructure (people, use case)
- ML Observability (people, use case)
 - feature and model prediction quality
- Feature engineering (use case, technology)

- Prediction service w/ fast model deployment (use case, people, culture)
- Model training infrastructure (people, use case)
- ML Observability (people, use case)
 - feature and model prediction quality
- Feature engineering (use case, technology)

- Prediction service w/ fast model deployment (use case, people, culture)
- Model training infrastructure (people, use case)
- ML Observability (people, use case)
 - feature and model prediction quality
- Feature engineering (use case, technology)

Tech. Stack

Sibyl Prediction Service

Summary

- Successful MLOps strategy
 - Use case, culture, technology, people
- Adopt MLOps as a team sport
 - Pay attention to organizational alignment upfront
 - Necessary to be successful
- Start small and iterate

DATA+AI SUMMIT 2022

Thank you

