
US Healthcare Price
Transparency in
Coverage
Utilizing Databricks and Delta Lake

1

Ross Silberquit
IT Principal Engineer, Cigna

Narayanan Hariharasubramanian
IT Principal Director, Cigna

Journey

2

A tale of Linear and Horizontal Progression

CMS Requirements Data Acquisition CMS Schema
Change

Pipeline
Orchestration

Design Implement Performance
Tuning

Who are we?
About us

3

• A global health services company with the mission
of improving the health, well-being, and peace of mind of
those we serve by making health care simple, affordable,
and predictable.

• easy to get care – letting you choose how, when, and
where you want it.

• A more affordable health care by partnering with
providers who provide quality, cost-effective care.

• A comprehensive health care coverage with “no
surprises.”

cigna.com/about-us/

https://www.cigna.com/about-us/

What is Price Transparency?
Phase One – Machine Readable Files (MRF)

4

• CMS mandated1 all health insurance
payers publicly post MRF files with
contracted provider rates for all
procedure codes.

• 3 Types of files:
• In-Network Contracted Rates

• Out-of Network Allowed Amounts

• Table Of Contents

• MRF schema set by CMS2.

Requirements

1. https://www.govinfo.gov/app/details/FR-2020-11-12/2020-24591 2. https://github.com/CMSgov/price-transparency-guide

Photo by İrfan Simsar on Unsplash

https://unsplash.com/@irfansimsar?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/agile?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Price Transparency
Phase One – Machine Readable Files (MRF)

5

• JSON files, one for each plan1

• Generated monthly

• Hosted on public domain

• Include data from partners

Requirements – contd...

1. https://github.com/CMSgov/price-transparency-guide/blob/master/examples/in-network-rates/in-network-rates-fee-for-service-single-plan-sample.json

10,000 Foot View
Data Flow

6

Ingest
Store

Normalize
Validate
Cleanse

Curate
Transform
Aggregate

Store
Host and Serve

On Public
Domain

User Access

Schedule
Orchestrate

Monitor
Ops

The Data
The power of scalability

7

Photo by benjamin lehman on Unsplash

CPT | ICD 10

Thousands of Providers

Tens of Thousands of Billing Codes

Hundreds of Plans

Billions of records

More than 60TB of Data

https://unsplash.com/@benjaminlehman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/database?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

8

Let’s dig in

Components
Using Databricks on AWS

9

• Dataset/frame APIs
(Scala)

• pySpark

• Used for :
• Normalization

• Validation

• Cleansing

• Aggregation

• Joins

Apache Spark

• REST API and Terraform
• Cluster orchestration

• Policy enforcement

• Job runs (via Airflow)

• Docker image with
Databricks CLIs for
integration testing

• Automated customer
onboarding and
provisioning.

CICD / Infrastructure

Databricks Components
Spark to the rescue

• Scala / Python / Bash

• Notebooks

• Packaged whl’s &
jar’s

Code

10

• Python WHL

• Scala JAR

• Notebooks

• Service Principals and
Managed cluster and Job
permissions

/jobs/*

• Glue catalog integration

• S3 based logging
destination

• Init scripts to auto-tag
EC2 instances for FinOps

• T-Shirt sizing for wide-
range of capacity
requirements.

/policies/clusters/*

Solution Architecture
Automation with Databricks API

• Nitro instances for HIPAA
compliance

• Instance types for storage
and memory optimized
nodes from i3en.xlarge to
24xlarge and r5dn.xlarge
to 8xlarge

• Auto-provisioned
instance pools

• Latest runtimes 10.x

/clusters/*

11

12

Delta Lake

Reusable Notebooks
Based on Databricks Autoloader

13

• Autoloader in Directory Listing
Mode

• Data Validation Rules and
Reporting

• DeltaLake MERGE to target

• Current and History View of Data

• Filters and Additional Columns
using in-built UDFs

• Registers tables to Glue Catalog

Data Storage and Processing
Why Delta Lake?

14

• Scales well for billions of records

• MERGE capabilities to maintain current view

• Great for sharing data with other teams

• Enables streaming use cases to process CDC data from sources and from
DeltaLake using Change Data Feed

• Intermediary results of aggregations and joins improving performance

• Manual & Auto-optimization, Z-ORDERing for improved performance

• Makes reporting and metrics faster with its metadata capabilities

15

Serving Layer

Solution Architecture
AWS & Other

16

17

Performance
Tuning

Optimization
With Apache Spark & Delta Lake

18

• Pre-partitioning sources on low-
cardinality fields

• Z-Ordering

• Delta Lake – Optimize

• Window Functions

• Aggregators

• Choosing the right EC2 instance types

Techniques

Photo by fabio on Unsplash

https://unsplash.com/@fabioha?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Optimization
General Best Practices

19

• - using all Datasets (strictly typed)

• - more shuffle partitions (smaller task
chunks to avoid OOM)

• - removing distincts (replaced with window
functions to avoid a second shuffle)

• - using delta format for initial write out
(delta cache boost)

• - breaking the job up into smallest possible
steps

What we tried

Photo by Kolleen Gladden on Unsplash

https://unsplash.com/@rockthechaos?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/performance?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Optimization
Aggregators

20

• IN - The input type for the aggregation.

• BUF - The type of the intermediate
value of the reduction.

• OUT - The type of the final output
result.

• Strictly typed datasets

Aggregator[-IN, BUF, OUT]

Photo by Ricardo Gomez Angel on Unsplash

https://unsplash.com/@rgaleria?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/funnel?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Optimization
Window Functions

21

• Can be more efficient than traditional
group by, assuming you pre-partition
data based on the same id (one shuffle
only)

• You don’t lose any extraneous
columns as you would with a
traditional group by

WindowSpec

Photo by Jayden So on Unsplash

https://unsplash.com/@jaydn_so?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/window?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Window Function Example
Code snippets

22

// Define a window and some helper functions

val proceedure_window: WindowSpec = Window.partitionBy(col("procedure"))

.orderBy(col("procedure"))

def selectTopOneRecord(window: WindowSpec)(df: DataFrame): Dataset[Row] = {

df.withColumn("row_number", row_number().over(window))

.filter(col("row_number") === 1)

.drop("row_number")

}

def addSetColumn(structCol: String, window: WindowSpec): Column = {

collect_set(structCol).over(window)

}

1

2

3

4

5

6

7

8

9

10

Window Function Example
Code snippets

23

// Transform a data set

case class RawData(id:Long,name:String,proceedure:String,cost:Double)

case class Provider(id:Long,name:String,cost:Double)

case class ProcedureWithProviderList(proceedure:String,providers:Seq[Provider])

def addProdcureStruct(): Column = { struct(col("id"), col("name"), col("cost"))}

val my_transformed_ds = my_input_ds

.withColumn("procedures", addProdcureStruct())

.withColumn("procedures",addSetColumn("procedures",procedure_window))

.transform(selectTopOneRecord(procedure_window))

.as[ProcedureWithProviderList]

1

2

3

4

5

6

7

8

9

10

Issue # 1
Even Spark has its limits

24

• Expected file size about 1.6 TB
uncompressed and 700 GB
compressed.

• Aggregate 1000’s of billing codes &
more than 2GB of data into an Array
column

• Aggregation action forces Spark to pull
all partitioned data to the same
executor.

CMS In-network rates MRF Schema is
not Spark friendly

java.lang.IllegalArgumentException: Cannot
grow BufferHolder by size XXXXXXXXX
because the size after growing exceeds
size limitation 2147483632

Solution
Back to basics

25

• It's a linux box under the hood!
• Scalable EC2*

• Notebooks make it easy to mix in OS
commands (%sh) with Scala or Python
based Spark code

• Mount storage from AWS S3*

Using Databricks as a compute platform

* when using Databricks on AWS
Photo by Gabriel Heinzer on Unsplash

https://unsplash.com/@6heinz3r?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/ubuntu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Solution
Back to basics

26

• Reading JSON data written out from Spark

• Using storage optimized instances

• Stitching together JSON data with bash
(%sh) commands in a notebook

• Utilizing Databricks mount points to read /
write data

• Monitoring server metrics with Ganglia UI

Using Databricks as a compute platform

Photo by Michael Dziedzic on Unsplash

https://unsplash.com/@lazycreekimages?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/compute?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Issue # 2
Serving up a large amount of data for a public domain

27

• Terabytes of data over HTTP

• Products with expected file sizes of 1.6
TB for a single JSON file.

• Public access

• 1-[n] downloads for each file

Photo by Timon Studler on Unsplash

https://unsplash.com/@derstudi?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/crowd?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Solution
Serving up a large amount of data for a public domain

28

• Compressing data during Spark write
and file stitching process

• Using window functions to remove
duplicate rows

• Utilizing AWS CloudFront to cache
data for downloads

Photo by Tomas Sobek on Unsplash

https://unsplash.com/@tomas_nz?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/compression?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

29

Automation

DevOps
Automate end-to-end pipelines and runtime

30

• Automated pipeline
• Databricks Jobs

• Jenkins

• Terraform

• SBT / Plz

• Airflow for Scheduling and
Orchestration

Curation-D

Photo by Christophe Dion on Unsplash

https://unsplash.com/@chris_dion?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pipeline?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Master DAG

31

32

Ross Silberquit
IT Principal Engineer

Thank you
Narayanan HariharaSubramanian
IT Principal Director

linkedin.com/in/rosssilberquit1 linkedin.com/in/narayanan-a-h

http://www.linkedin.com/in/rosssilberquit1
http://www.linkedin.com/in/narayanan-a-h

Appendix
Disclaimer

• All architectural & code samples are for demonstrative purposes only
and should not be considered a complete working solution.

33

Appendix
Sources

• All photos are from Unsplash.com (https://unsplash.com/license)

• Aggregators https://spark.apache.org/docs/latest/sql-ref-functions-
udf-aggregate.html#user-defined-aggregate-functions-udafs

• Aggregators sample
notebook: https://docs.databricks.com/_static/notebooks/dataset-
aggregator.html

• Window functions https://spark.apache.org/docs/latest/sql-ref-syntax-
qry-select-window.html

34

https://spark.apache.org/docs/latest/sql-ref-functions-udf-aggregate.html
https://docs.databricks.com/_static/notebooks/dataset-aggregator.html
https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-window.html

35

Ross Silberquit
IT Principal Engineer

Thank you
Narayanan HariharaSubramanian
IT Principal Director

linkedin.com/in/rosssilberquit1 linkedin.com/in/narayanan-a-h

http://www.linkedin.com/in/rosssilberquit1
http://www.linkedin.com/in/narayanan-a-h

