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Who are we?
About us
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• A global health services company with the mission 
of improving the health, well-being, and peace of mind of 
those we serve by making health care simple, affordable, 
and predictable.

• easy to get care – letting you choose how, when, and 
where you want it.

• A more affordable health care by partnering with 
providers who provide quality, cost-effective care.

• A comprehensive health care coverage with “no 
surprises.”

cigna.com/about-us/

https://www.cigna.com/about-us/


What is Price Transparency?
Phase One – Machine Readable Files (MRF)

4

• CMS mandated1 all health insurance 
payers publicly post MRF files with 
contracted provider rates for all 
procedure codes.

• 3 Types of files:
• In-Network Contracted Rates

• Out-of Network Allowed Amounts

• Table Of Contents

• MRF schema set by CMS2.

Requirements

1. https://www.govinfo.gov/app/details/FR-2020-11-12/2020-24591 2. https://github.com/CMSgov/price-transparency-guide

Photo by İrfan Simsar on Unsplash

https://unsplash.com/@irfansimsar?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/agile?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Price Transparency
Phase One – Machine Readable Files (MRF)
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• JSON files, one for each plan1

• Generated monthly

• Hosted on public domain

• Include data from partners

Requirements – contd...

1. https://github.com/CMSgov/price-transparency-guide/blob/master/examples/in-network-rates/in-network-rates-fee-for-service-single-plan-sample.json



10,000 Foot View
Data Flow
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The Data
The power of scalability
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Photo by benjamin lehman on Unsplash

CPT | ICD 10

Thousands of Providers

Tens of Thousands of Billing Codes

Hundreds of Plans

Billions of records

More than 60TB of Data

https://unsplash.com/@benjaminlehman?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/database?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Let’s dig in



Components
Using Databricks on AWS
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• Dataset/frame APIs 
(Scala)

• pySpark

• Used for :
• Normalization

• Validation

• Cleansing

• Aggregation

• Joins

Apache Spark

• REST API and Terraform
• Cluster orchestration

• Policy enforcement

• Job runs (via Airflow)

• Docker image with 
Databricks CLIs for 
integration testing

• Automated customer 
onboarding and 
provisioning.

CICD / Infrastructure

Databricks Components
Spark to the rescue

• Scala / Python / Bash

• Notebooks

• Packaged whl’s & 
jar’s

Code
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• Python WHL

• Scala JAR

• Notebooks

• Service Principals and 
Managed cluster and Job 
permissions

/jobs/*

• Glue catalog integration

• S3 based logging 
destination

• Init scripts to auto-tag 
EC2 instances for FinOps

• T-Shirt sizing for wide-
range of capacity 
requirements.

/policies/clusters/*

Solution Architecture
Automation with Databricks API

• Nitro instances for HIPAA 
compliance

• Instance types for storage 
and memory optimized 
nodes from i3en.xlarge to 
24xlarge and r5dn.xlarge 
to 8xlarge

• Auto-provisioned 
instance pools

• Latest runtimes 10.x

/clusters/*

11
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Delta Lake



Reusable Notebooks
Based on Databricks Autoloader

13

• Autoloader in Directory Listing 
Mode

• Data Validation Rules and 
Reporting

• DeltaLake MERGE to target

• Current and History View of Data

• Filters and Additional Columns 
using in-built UDFs

• Registers tables to Glue Catalog



Data Storage and Processing
Why Delta Lake?
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• Scales well for billions of records

• MERGE capabilities to maintain current view

• Great for sharing data with other teams

• Enables streaming use cases to process CDC data from sources and from 
DeltaLake using Change Data Feed

• Intermediary results of aggregations and joins improving performance

• Manual & Auto-optimization, Z-ORDERing for improved performance

• Makes reporting and metrics faster with its metadata capabilities
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Serving Layer



Solution Architecture
AWS & Other
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Performance 
Tuning



Optimization
With Apache Spark & Delta Lake
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• Pre-partitioning sources on low-
cardinality fields

• Z-Ordering

• Delta Lake – Optimize

• Window Functions

• Aggregators

• Choosing the right EC2 instance types

Techniques

Photo by fabio on Unsplash

https://unsplash.com/@fabioha?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/data?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Optimization
General Best Practices
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• - using all Datasets (strictly typed)

• - more shuffle partitions (smaller task 
chunks to avoid OOM)

• - removing distincts (replaced with window 
functions to avoid a second shuffle)

• - using delta format for initial write out 
(delta cache boost)

• - breaking the job up into smallest possible 
steps

What we tried

Photo by Kolleen Gladden on Unsplash

https://unsplash.com/@rockthechaos?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/performance?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Optimization
Aggregators
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• IN - The input type for the aggregation.

• BUF - The type of the intermediate 
value of the reduction.

• OUT - The type of the final output 
result.

• Strictly typed datasets

Aggregator[-IN, BUF, OUT]

Photo by Ricardo Gomez Angel on Unsplash

https://unsplash.com/@rgaleria?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/funnel?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Optimization
Window Functions
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• Can be more efficient than traditional 
group by, assuming you pre-partition 
data based on the same id (one shuffle 
only)

• You don’t lose any extraneous 
columns as you would with a 
traditional group by

WindowSpec

Photo by Jayden So on Unsplash

https://unsplash.com/@jaydn_so?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/window?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Window Function Example
Code snippets
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// Define a window and some helper functions

val proceedure_window: WindowSpec = Window.partitionBy(col("procedure"))

.orderBy(col("procedure"))

def selectTopOneRecord(window: WindowSpec)(df: DataFrame): Dataset[Row] = {

df.withColumn("row_number", row_number().over(window))

.filter(col("row_number") === 1)

.drop("row_number")

}

def addSetColumn(structCol: String, window: WindowSpec): Column = {

collect_set(structCol).over(window)

}
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Window Function Example
Code snippets

23

// Transform a data set

case class RawData(id:Long,name:String,proceedure:String,cost:Double)

case class Provider(id:Long,name:String,cost:Double)

case class ProcedureWithProviderList(proceedure:String,providers:Seq[Provider])

def addProdcureStruct(): Column = { struct(col("id"), col("name"), col("cost"))}

val my_transformed_ds = my_input_ds

.withColumn("procedures", addProdcureStruct())

.withColumn("procedures",addSetColumn("procedures",procedure_window))

.transform(selectTopOneRecord(procedure_window))

.as[ProcedureWithProviderList]
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Issue # 1
Even Spark has its limits
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• Expected file size about 1.6 TB 
uncompressed and 700 GB 
compressed.

• Aggregate 1000’s of billing codes & 
more than 2GB of data into an Array 
column

• Aggregation action forces Spark to pull 
all partitioned data to the same 
executor.

CMS In-network rates MRF Schema is 
not Spark friendly

java.lang.IllegalArgumentException: Cannot 
grow BufferHolder by size XXXXXXXXX 
because the size after growing exceeds 
size limitation 2147483632



Solution
Back to basics 
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• It's a linux box under the hood!
• Scalable EC2*

• Notebooks make it easy to mix in OS 
commands (%sh) with Scala or Python 
based Spark code

• Mount storage from AWS S3*

Using Databricks as a compute platform

* when using Databricks on AWS
Photo by Gabriel Heinzer on Unsplash

https://unsplash.com/@6heinz3r?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/ubuntu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Solution
Back to basics 
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• Reading JSON data written out from Spark

• Using storage optimized instances

• Stitching together JSON data with bash 
(%sh) commands in a notebook

• Utilizing Databricks mount points to read / 
write data

• Monitoring server metrics with Ganglia UI

Using Databricks as a compute platform

Photo by Michael Dziedzic on Unsplash

https://unsplash.com/@lazycreekimages?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/compute?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Issue # 2
Serving up a large amount of data for a public domain
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• Terabytes of data over HTTP

• Products with expected file sizes of 1.6 
TB for a single JSON file. 

• Public access

• 1-[n] downloads for each file

Photo by Timon Studler on Unsplash

https://unsplash.com/@derstudi?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/crowd?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Solution
Serving up a large amount of data for a public domain
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• Compressing data during Spark write 
and file stitching process

• Using window functions to remove 
duplicate rows

• Utilizing AWS CloudFront to cache 
data for downloads

Photo by Tomas Sobek on Unsplash

https://unsplash.com/@tomas_nz?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/compression?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Automation



DevOps
Automate end-to-end pipelines and runtime
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• Automated pipeline
• Databricks Jobs

• Jenkins

• Terraform

• SBT / Plz

• Airflow for Scheduling and 
Orchestration

Curation-D

Photo by Christophe Dion on Unsplash

https://unsplash.com/@chris_dion?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pipeline?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Master DAG
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Appendix
Disclaimer

• All architectural & code samples are for demonstrative purposes only 
and should not be considered a complete working solution.  
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Appendix
Sources

• All photos are from Unsplash.com (https://unsplash.com/license)

• Aggregators https://spark.apache.org/docs/latest/sql-ref-functions-
udf-aggregate.html#user-defined-aggregate-functions-udafs

• Aggregators sample 
notebook: https://docs.databricks.com/_static/notebooks/dataset-
aggregator.html

• Window functions https://spark.apache.org/docs/latest/sql-ref-syntax-
qry-select-window.html
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https://spark.apache.org/docs/latest/sql-ref-functions-udf-aggregate.html
https://docs.databricks.com/_static/notebooks/dataset-aggregator.html
https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-window.html
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