
Chronon
Airbnb’s Feature Engineering Framework

Nikhil Simha
nikhil.simha@airbnb.com

Announcements

 You are in the right place!

Renamed to “Chronon” from zipline

Private Beta - user / contributor

 If you are interested drop a mail to

 nikhil.simha@airbnb.com or jack.song@airbnb.com

mailto:nikhil.simha@airbnb.com
mailto:jack.song@airbnb.com

Cristian
Figueroa

Pengyu
Hou

Varant
Zanoyan

Nikhil
Simha

Vamsee
Yarlagadda

Atul
Kale

Jack
Song

Haichun
Chen

Haozhen
Ding

Agenda

Goals and Requirements

API Overview

Concepts & Examples

Dependencies Overview

Integration guide

Goals - management

Uniform API

Python + Spark SQL

 Online & Offline

Raw Data -> Training Data

Raw Data -> Feature Serving

Feature Repository

 Compiled

 Team based

Feature monitoring

Goals - API

Powerful & Composable Building blocks

Source types

Entities Events & Cumulative Events

GroupBy - Aggregation engine

Join - PITC joins

Staging Query

Arbitrary ETL to prepare data

Goals - computation

Log & Wait vs Backfill
 Large models -> large training data ranges -> lot of waiting

New features are mostly derived from existing raw data
Realtime Features
 Hardest systems problem in ML
 Stream processing + Batch processing + Storage + Fetching
 Backfills

Non-Goals

• No Model Training or Serving

• Not for interactive exploration

• Spark vs Clickhouse/Druid

• Static usage is fine

Requirements

Airflow
Scheduler

or BYO

Kafka
Event Store

or BYO

Hive (optional)
Batch-Catalog

or BYO

Spark
Compute Engine

?
KV Store

Bring-Your-Own

Offline - problem statement (item recommendation)

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table

code

https://gist.github.com/nikhilsimha/13cf46b93116bc3b0b08b4adc1483bd1

Offline - problem statement

Online - problem statement

View

Rating

1 1 1

3

Time

1

2 4

Label L

Prediction P1 P2

3

3

2

2.5

L L

Training data set

Examples – E-Commerce platform

Count of Item views of a user in the last 5 hours – from a item view stream

Average rating of an item in the last 90 days – from a ratings table

Count / Average – Aggregation operations

Item Views/Rating – Aggregation Inputs

User/item – Aggregation Key

Last X days – Aggregation Window

Ratings Table/ Item View Stream – Data Source

Accuracy - Real-time or Daily

Data Sources

Service Fleet

Production
Database

DB
Snapshot

Event log

Change
Capture
Stream

Event
Stream

 Change
capture log

Message Bus

Data Lake

Live

Derived
Data

Media

Sources - Events

• Each partition contains data/events that occur in [ds, ds + 1]

• fct sources/dim sources

• PITC -> hive table

• materialized view -> topic

Sources - Entities

• Each partition contains data for all entities - as of ds (date_string)
• DB Table snapshots

• Sqoop

• Mutations! (CDC)
• Mutations Table & a Mutation Topic

• Debezium + Kafka

• PITC -> snapshot table + mutation table
• materialized views -> snapshot table + mutation topic

Sources - Cumulative

• Insert only tables

• Each new partition is a superset of any old partition

• Latest partition is enough to backfill features at arbitrary points in time

• No deletes/updates - mutations table not needed

• Events in db tables

Sources - Why?

Error-prone date wrangling

fct/event scan = partition_of(min_query_ts - max window)

cumulative scan = latest_partition

entity scan

snapshot_table - partition_of(min_query_ts) - 1

mutation_table - partition_of(min_query_ts)

Optimization hints!

GroupBy

Concepts - GroupBy

• Group of Features derived from the same/similar sources of data
• Data Source

• From + Where + Select - powered by spark sql
• Keys
• Aggregations

• Input
• Operation
• Window - optional & hourly or daily
• Bucketing - ratings by category - Map [category -> rating]

Concepts - Aggregations

SUM, COUNT, AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K,

LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM…

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates

Windows – Sliding

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Query
2:27

Query tail
 1:27

Sliding
Window

e3 + e4 + e5

• Freshness

• Memory intensive

Windows – Hopping

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Hopping
Window

e4 + e5 + e6

Query
2:27

Query tail
 1:27

Sliding
Window

e3 + e4 + e5

Windows – Hopping

• Staleness

• As stale as the hop size

• Memory Efficient

• One partial per hop

Query Time

S
ta

le
ne

ss

Windows – Sawtooth

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30

e1 e2 e3 e4 e5 e6

Hopping
Window

e4 + e5 + e6

Query
2:27

Query tail
 1:27

Sliding
Window

e3 + e4 + e5

Sawtooth
Window

e3 + e4 + e5 + e6

Windows – Sawtooth

• Freshness

• Writes are taken into account immediately

• Memory

• Partial aggregates per hop

Windows – Sawtooth

• Catch

• sum/count vs others

• Consistency

Query Time

Hop
Size

Hop
SizeWindow

SizeE
ffe

ct
iv

e
W

in
do

w

Join

Concepts - Join

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table

Concepts - Join

Concepts - Join

• Join multiple GroupBy-s (feature groups) together
• Decide to show a particular user a particular item – likelihood to buy

• X User Features groups
• Y Item Features
• Z (User, Item) Features– past interactions

• Gather both Online & Offline
• Left & rights

• labelled data + timestamped keys & feature derivations

Workflow

User workflow

explore.py Author compile.py run.py

Explore

• Key word search “view” / “rating” etc.

• Search for features in a group

• Models using a feature

• Data Sources for a feature

• Features used in a model

• Feature group authors + last changed

Compile

• Py is powerful

• Complete & Final representation

• Change Reasoning

• Hand-off to scala engine

Run.py - testing

• Offline flows
• Join – training data generation
• StagingQuery – arbitrary ETL
• GroupBy – midnight accuracy – metrics style

• Online flows
• Lambda – batch + streaming
• Fetching join & groupBy
• Uploading metadata

Model Server

Scheduling needs

Feature
Declaration

Streaming
Updates

Batch partial
aggregates

Feature
Store

Model
Feature
Client

Application
Server

Run.py - scheduling

• Airflow based - but flexible

• Joins: DAG each

• GroupBy: DAG per team
• Lambda Serving
• Streaming task is “heartbeat-or-restart”

• Staging Query: DAG per team

Repo structure

• staging_queries - free form etl

• group_bys – aggregation primitive

• joins – gathering multiple groupBy’s

•

Folder/module per “team”
• teams.json

• Compiled artifact folder
Scripts - spark batch & streaming jobs + fetch online jar

Repo structure - one time setup

• Scripts
• spark batch job submission

• spark streaming jobs

• fetch online api implementation jar

Workflows – offline

• Idempotency / Auto backfill
• Job always tries to fill in all of its unfilled range

• Airflow convention is task instance per date
• Re-use compute & Natural ML user-flow

• Staging Queries
• Free form ETL

• Spark SQL Based

• Join Backfills – already covered

• GroupBy Standalone Backfills

Workflows – Online

• Read optimized materialized views
• Low latency ~10ms, high QPS

• Based on
• Kafka
• Spark Streaming
• General KV Store API

Online Integration API

• One time integration

• KV Store
• Point Read + Scan from timestamp
• Single Write + Bulk Write

• Streaming
• Decode Bytes into a Row in Chronon Schema
• Intersection of Avro & Parquet

Airflow Scheduling
• We provide airflow integration template

Perf Stats

• Serving
• Read: latency, qps, payload sizes - breakdown by groupBy
• Streaming Write: Freshness, qps, payload size
• Bulk write: Compute time, data sizes etc.

• Training data generation
• Compute time – breakdowns
• Row count

Data Stats

• Online offline consistency
• Numerical: SMAPE
• Categorical: Inequality percentage
• Lists: Edit Distance

• Feature Quality
• Coverage
• Cardinality
• Distribution
• Correlation

Cases

• Online / Offline
• Backfilled / Logged
• PITC / Midnight accurate
• Events / Entities / Cumulative
• Windowed / Lifetime Aggregations
• Reversible / Non Reversible
• Single Column, Single Aggregation, Single window

Problem statement - Events PITC

Naive approach

Complexity?

Naive approach

Complexity?

N^2

Can we do better?
• sort + cursors

• Complexity? n*log(n)

• Distribute friendly?

• Use of subtraction - doesn’t work

for max, min etc.

• Even better?

Some important observations
• Windows overlap a lot for a given key

• Label data is usually much smaller than raw data

• Fraction of keys that engage on the platform is small

• The fraction with labels could be even smaller.

Approaches
• Windows overlap a lot for a given key

• Break windows into reusable tiles.
• Label data is usually much smaller than raw data

• Use labels/queries to determine the tiles effectively
• Fraction of keys that engage on the platform is small

• Use a compact approximate structure to filter out “most” of unwanted keys
• Bloom filter - false positives are okay, true negatives are not.

12 13

Tiling windows

0 1

Query timestamps

0-1

2 3

2-3

0-3

4 5

4-5

6 7

6-7

4-7

0-7

8 9

8-9

10 11

10-11

8-11

12-13

14 15

14-15

12-15

8-15

0-15

Incoming Event (ts, payload) Event span

Window tiling

• Hopping tail is common across all queries that fall into the head!

• The idea is to compute tails and heads separately.

Window tiling
• What if queries don’t fit in memory?

• Tiling can’t be dynamic(query dependent)

• Hops?

• Let’s examine window semantics

Window tiling

• We need to stitch together
• Tail value
• Raw events in the head
• Queries in the head

Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)

Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]

Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)

Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]

Window tiling - final

• Trade-off

• Moving too much data

• Evenly distributing work across machines

Resources

• Pig’s perf page
• VLDB

• anything that has “groupjoin” on it.
• sketches

• Yahoo datasketches library
• cardinality estimation - CPC sketch
• frequent items

• Bloom filters

https://pig.apache.org/docs/latest/perf.html#specialized-joins

• MPP compute - trino, clickhouse etc., traditional OLAP
• Don’t scale

• RDD lacks “stream one side of the join into the other WHILE aggregating”
• OLAP / MPP is actually streaming
• Not new / flink / beam / tf

Opinions

Streaming

Micro
Batch MPP

Uni-directional/DAG Iterative

Graph ML

Interactive
Analytics BI Metrics Features

Page
Rank

Social
Hash … Model Parallel

All ReduceSQL Monadic/
DataFrame/RDD

Data
Parallel

Appendix - Tree Tiling

