Chronon

Airbnb’s Feature Engineering Framework

Nikhil Simha
nikhil.simha@airbnb.com

Announcements

You are in the right place!
Renamed to “Chronon” from zipline
Private Beta - user / contributor

If you are interested drop a mail to

nikhil.simha@airbnb.com or jack.song@airbnb.com

mailto:nikhil.simha@airbnb.com
mailto:jack.song@airbnb.com

»

Cristian Haozhen Pengyu Vamsee Varant
Figueroa Ding Hou Yarlagadda Zanoyan

Atul Jack Haichun Nikhil
Kale Song Chen Simha

Agenda

Goals and Requirements

API Overview
Concepts & Examples

Dependencies Overview

Integration guide

Goals - management

Uniform API

Python + Spark SQL

Online & Offline

Raw Data -> Training Data

Raw Data -> Feature Serving
Feature Repository

Compiled

Team based

Feature monitoring

Goals - API

Powerful & Composable Building blocks
Source types
Entities Events & Cumulative Events
GroupBYy - Aggregation engine
Join - PITC joins
Staging Query
Arbitrary ETL to prepare data

Goals - computation

Log & Wait vs Backfill
Large models -> large training data ranges -> lot of waiting
New features are mostly derived from existing raw data
Realtime Features
Hardest systems problem in ML
Stream processing + Batch processing + Storage + Fetching
Backfills

Non-Goals

No Model Training or Serving
Not for interactive exploration
Spark vs Clickhouse/Druid

Static usage is fine

Requirements

gt

K

Kafka Hive (optional) Spark
Event Store Batch-Catalog Compute Engine
or BYO or BYO
‘E, ;I‘=!
KV Store Airflow
Bring-Your-Own Scheduler

or BYO

Offline - problem statement (item recommendation)

user_id timestamp view_count_5h

From view stream

alice 2021-09-30 5:24

avg_rating_90d
bob 2021-10-15 9:18

From ratings db table

or-1g 2021-11-21 7:44

code

https://gist.github.com/nikhilsimha/13cf46b93116bc3b0b08b4adc1483bd1

Offline - problem statement

timestamp views_count_5h avg_rating_90d

2021-09-30 5:24 10 3.7

2021-10-15 9:18 7 4.5

2021-11-217:44 2.1

Online - problem statement

user_id timestamp views_count_5h avg_rating_90d

alice 2021-09-30 5:24 10 3.7
bob 2021-10-15 9:18 7 4.5

carl 2021-11-217:44 2.1

Training data set

Examples — E-Commerce platform

Count of Item views of a user in the last 5 hours — from a item view stream

Averaqge rating of an item in the last 90 days — from a ratings table

Count / Average — Aggregation operations

ltem Views/Rating — Aggregation Inputs
User/item — Aggregation Key

Last X days — Aggregation Window

Ratings Table/ Iltem View Stream — Data Source

Accuracy - Real-time or Daily

Data Sources

/ Service Fleet

Change
Capture
Stream

Event
Stream

Production

//////_ Database _*

DB
Snapshot

Change
capture log

Event log

Derived
Data

Sources - Events

Each partition contains data/events that occur in [ds, ds + 1]
fct sources/dim sources
PITC -> hive table

materialized view -> topic

Sources - Entities

Each partition contains data for all entities - as of ds (date_string)
DB Table snapshots

Sqoop
Mutations! (CDC)

Mutations Table & a Mutation Topic

Debezium + Kafka
PITC -> snapshot table + mutation table
materialized views -> snapshot table + mutation topic

Sources - Cumulative

Insert only tables

Each new partition is a superset of any old partition
Latest partition is enough to backfill features at arbitrary points in time
No deletes/updates - mutations table not needed

Events in db tables

Sources - Why?

Error-prone date wrangling
fct/event scan = partition_of(min_query_ts - max window)
cumulative scan = latest_partition
entity scan
snapshot_table - partition_of(min_query ts) - 1
mutation_table - partition_of(min_query_ts)

Optimization hints!

GroupBy

Concepts - GroupBy

Group of Features derived from the same/similar sources of data

Data Source
From + Where + Select - powered by spark sq|l

Keys
Aggregations
Input
Operation
Window - optional & hourly or daily
Bucketing - ratings by category - Map [category -> rating]

Concepts - Aggregations

SUM, COUNT, AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K,
LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM...

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates

Windows — Sliding

Sliding
Window
e3+e4+eb

. Query
tail
Que1r:3£7a| pyp
| |
| 1
I 1
I 1
! :
el e2 e3 : ed e5 eb :
1
| I
' |
1
1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
Freshness

Memory intensive

Windows — Hopping

Sliding
Window
e3+e4+eb

Query tail Query
1:27 2:27
| I
| |
I |
I |
! :
el e2 e3 : ed e5 e6 :
|
| :
' I
|
1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
Hopping
Window

e4d +eb +eb

Windows — Hopping

Staleness

As stale as the hop size

Memory Efficient

Staleness

One partial per hop

/

Query Time

Windows — Sawtooth

Sliding
Window
e3+e4+eb

tail Query
Que&;’" 2:27
| |
| |
I |
I |
! :
el e2 e3 : ed e5 eb :
|
| I
' |
|
1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
Hopping
Window

e4d +eb +eb

Sawtooth
Window
e3+e4+e5+eb

Windows — Sawtooth

Freshness

Writes are taken into account immediately

Memory

Partial aggregates per hop

Windows — Sawtooth

Catch

sum/count vs others

Consistency

Effective

Window

Query Time

Hop
Size
. Hop
qudow Size
Size
S

Join

Concepts - Join

user_id
alice

bob

carl

timestamp

2021-09-30 5:24

2021-10-15 9:18

2021-11-21 7:44

view_count_5h

From view stream
avg_rating 90d

From ratings db table

Concepts - Join

user_id timestamp views_count_5h avg_rating_90d

alice 2021-09-305:24 10 3.7

bob 2021-10-15 9:18 7 4.5

carl 2021-11-21 7:44 2.1

Concepts - Join

Join multiple GroupBYy-s (feature groups) together
Decide to show a particular user a particular item — likelihood to buy

X User Features groups
Y Item Features
Z (User, Item) Features— past interactions

Gather both Online & Offline

Left & rights

labelled data + timestamped keys & feature derivations

Workflow

User workflow

Q & % O

explore.py Author compile.py run.py

Explore

Key word search “view” / “rating” etc.
Search for features in a group
Models using a feature

Data Sources for a feature

Features used in a model

Feature group authors + last changed

Compile

Py is powerful
Complete & Final representation
Change Reasoning

Hand-off to scala engine

Run.py - testing

Offline flows
Join — training data generation
StagingQuery — arbitrary ETL
GroupBy — midnight accuracy — metrics style

Online flows
Lambda — batch + streaming
Fetching join & groupBy
Uploading metadata

Scheduling needs

Feature
Declaration

Streaming
Updates

Batch partial
aggregates

Feature
Store

Model Server

Feature
Client

— Model

Application

Server

Run.py - scheduling

Airflow based - but flexible
Joins: DAG each
GroupBYy: DAG per team

Lambda Serving
Streaming task is “heartbeat-or-restart”

Staging Query: DAG per team

Repo structure

staging_queries - free form etl
group_bys — aggregation primitive

joins — gathering multiple groupBYy’s

Folder/module per “team”

teams.json

Compiled artifact folder
Scripts - spark batch & streaming jobs + fetch online jar

Repo structure - one time setup

Scripts
spark batch job submission
spark streaming jobs

fetch online api implementation jar

Workflows - offline

ldempotency / Auto backfill
Job always tries to fill in all of its unfilled range
Airflow convention is task instance per date
Re-use compute & Natural ML user-flow
Staging Queries
Free form ETL
Spark SQL Based

Join Backfills — already covered

GroupByYy Standalone Backfills

Workflows — Online

Read optimized materialized views
Low latency ~10ms, high QPS

Based on

Kafka
Spark Streaming
General KV Store API

Online Integration API

One time integration
KV Store

Point Read + Scan from timestamp
Single Write + Bulk Write

Streaming

Decode Bytes into a Row in Chronon Schema
Intersection of Avro & Parquet

Airflow Scheduling

We provide airflow integration template

Perf Stats

Serving
Read: latency, gps, payload sizes - breakdown by groupBy
Streaming Write: Freshness, qps, payload size
Bulk write: Compute time, data sizes etc.
Training data generation
Compute time — breakdowns

Row count

Data Stats

Online offline consistency
Numerical: SMAPE
Categorical: Inequality percentage
Lists: Edit Distance
Feature Quality
Coverage
Cardinality
Distribution
Correlation

Cases

Online /
/ Logged
/ Midnight accurate
/ Entities / Cumulative
| Lifetime Aggregations
Reversible /

Problem statement - Events PITC

timestamp views_count_7d

2021-09-30 5:24
2021-10-15 9:18

2021-11-21 7:44

Naive approach

SELECT user, query.timestamp as query_timestamp, COUNT(view_id) as
view_count_7d
FROM queries JOIN views ON

querlies.user = views.user AND

view.timestamp < queries.timestamp AND

view.timestamp >= (queries.timestamp - 7d) —— 7 *x 24 x 3600 * 1000

GROUP BY user, query_timestamp

Complexity?

Naive approach

result = []
for query_ts in queries:
view_count = 0
for view_ts in views:
if view_ts < query_ts and view_ts > query_ts — millis_7d:
view_count += 1
result.append((query_ts, view_ts))

Complexity?

NA2

Can we do better?

result = []
start = 0
end =
count =1
sorted_views = sorted(views)
for query_ts in sorted(queries):
query start query ts - 7 % day mlllls
whtte start < len(sorted v1ews) and sorted v1ews[start] <
query_start:

start += 1
count =1

while end < len(sorted_views) and sorted_views[end] < query_ts:
end += 1
count += 1
result.append((query_ts, count))

sort + cursors
Complexity? n*log(n)
Distribute friendly?

Use of subtraction - doesn’t work

for max, min etc.

Even better?

Some important observations

Windows overlap a lot for a given key
Label data is usually much smaller than raw data
Fraction of keys that engage on the platform is small

The fraction with labels could be even smaller.

Approaches

Windows overlap a lot for a given key
Break windows into reusable tiles.
Label data is much smaller than raw data
Use labels/queries to determine the tiles effectively
Fraction of keys that engage on the platform is small
Use a compact approximate structure to filter out “most” of unwanted keys
Bloom filter - false positives are okay, true negatives are not.

Tiling windows

0-3

o

0-15

8-15

i_l_3_|

14 | 15

Window tiling

Hopping tail is common across all queries that fall into the head!

The idea is to compute tails and heads separately.

Window tiling

What if queries don’t fit in memory?
Tiling can’t be dynamic(query dependent)
Hops?

Let’'s examine window semantics

Window tiling

We need to stitch together
Tail value
Raw events in the head

Queries in the head

Sawtooth window

Topology 1/2

Topology 2/2

Topology 1/2

Topology 2/2

Window tiling - final

Trade-off
Moving too much data

Evenly distributing work across machines

Resources

Pig’s perf page
VLDB
anything that has “groupjoin” on it.
sketches
Yahoo datasketches library
cardinality estimation - CPC sketch
frequent items
Bloom filters

https://pig.apache.org/docs/latest/perf.html#specialized-joins

Opinions

MPP compute - trino, clickhouse etc., traditional OLAP
Don'’t scale
RDD lacks “stream one side of the join into the other WHILE aggregating”
OLAP / MPP is actually streaming
Not new / flink / beam / tf

Micro

Batch Graph

Uni-directional/DAG Iterative

Streaming

Appendix - Tree Tiling

def generateTiles(left: Int, right: Int, tileConsumer: (Int, Int) => Unit): Int =

val powerOfTwo =< (31 - Integer.numberOfLeaditheros(left A right))
val splitPoint = (right/power0fTwo) * powerOfTwo

var leftDistance = splitPoint - left

var rightBoundary = splitPoint

while(leftDistance > 0) {
val maxPower = Integer.highestOneBit(leftDistance)
tileConsumer(rightBoundary - maxPower, rightBoundary)
rightBoundary —= maxPower
leftDistance —= maxPower

}

var rightDistance = right - splitPoint

var leftBoundary = splitPoint

while(rightDistance > 0) {
val maxPower = Integer.highestOneBit(rightDistance)
tileConsumer(leftBoundary, leftBoundary + maxPower)
leftBoundary += maxPower
rightDistance —= maxPower

}

splitPoint

