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Announcements

  You are in the right place!

Renamed to “Chronon” from zipline

Private Beta - user / contributor 

     If you are interested drop a mail to 

     nikhil.simha@airbnb.com or jack.song@airbnb.com 
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Agenda

Goals and Requirements

API Overview

Concepts & Examples

Dependencies Overview

Integration guide



Goals - management

Uniform API 

Python + Spark SQL 

         Online & Offline  

Raw Data -> Training Data 

Raw Data -> Feature Serving

Feature Repository

         Compiled

         Team based

Feature monitoring 

        



Goals - API

Powerful & Composable Building blocks

Source types

Entities Events & Cumulative Events

GroupBy - Aggregation engine 

Join - PITC joins

Staging Query 

Arbitrary ETL to prepare data



Goals - computation

Log & Wait vs Backfill
      Large models -> large training data ranges -> lot of waiting

New features are mostly derived from existing raw data
Realtime Features
      Hardest systems problem in ML
      Stream processing + Batch processing + Storage + Fetching
 Backfills 



Non-Goals 

 

• No Model Training or Serving

• Not for interactive exploration

• Spark vs Clickhouse/Druid

• Static usage is fine



Requirements

Airflow 
Scheduler

or BYO

Kafka 
Event Store

or BYO

Hive (optional)
Batch-Catalog

or BYO

Spark 
Compute Engine

?
KV Store 

Bring-Your-Own



Offline - problem statement (item recommendation)

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table

code

https://gist.github.com/nikhilsimha/13cf46b93116bc3b0b08b4adc1483bd1


Offline - problem statement



Online - problem statement
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Examples – E-Commerce platform

Count of  Item views of a user in the last 5 hours – from a item view stream

Average rating of an item in the last 90 days – from a ratings table

Count / Average – Aggregation operations

Item Views/Rating – Aggregation Inputs

User/item – Aggregation Key

Last X days – Aggregation Window

Ratings Table/ Item View Stream – Data Source

Accuracy - Real-time or Daily



Data Sources



Service Fleet

Production 
Database

DB 
Snapshot

Event log 

Change
Capture
Stream

Event 
Stream

 Change 
capture log

Message Bus

Data Lake

Live

Derived 
Data

Media



Sources - Events 

• Each partition contains data/events that occur in [ds, ds + 1]

• fct sources/dim sources

• PITC -> hive table

• materialized view -> topic



Sources - Entities 

• Each partition contains data for all entities - as of ds (date_string)
• DB Table snapshots 

• Sqoop

• Mutations! (CDC)
• Mutations Table & a Mutation Topic

•  Debezium + Kafka

• PITC -> snapshot table + mutation table
• materialized views -> snapshot table + mutation topic



Sources - Cumulative

• Insert only tables

• Each new partition is a superset of any old partition

• Latest partition is enough to backfill features at arbitrary points in time

• No deletes/updates - mutations table not needed

• Events in db tables



Sources - Why?

Error-prone date wrangling

fct/event scan = partition_of(min_query_ts - max window)

cumulative scan = latest_partition

entity scan 

snapshot_table - partition_of(min_query_ts) - 1

mutation_table - partition_of(min_query_ts)

Optimization hints!



GroupBy



Concepts - GroupBy

• Group of Features derived from the same/similar sources of data
• Data Source 

• From + Where + Select - powered by spark sql
• Keys
• Aggregations

• Input
• Operation
• Window - optional & hourly or daily
• Bucketing - ratings by category - Map [category -> rating]



Concepts - Aggregations

SUM, COUNT,  AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K, 

LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM…

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates



Windows – Sliding

1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30
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e3 + e4 + e5

• Freshness

• Memory intensive



Windows – Hopping
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Windows – Hopping

• Staleness

• As stale as the hop size

• Memory Efficient

• One partial per hop 
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Windows – Sawtooth
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Windows – Sawtooth

• Freshness

• Writes are taken into account immediately

• Memory 

• Partial aggregates per hop



Windows – Sawtooth

• Catch

• sum/count vs others

•  Consistency
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Join



Concepts - Join

• view_count_5h

• From view stream

• avg_rating_90d

• From ratings db table



Concepts - Join



Concepts - Join

• Join multiple GroupBy-s (feature groups) together
• Decide to show a particular user a particular item – likelihood to buy

• X  User Features groups
• Y  Item Features
• Z  (User, Item) Features– past interactions

• Gather both Online & Offline
• Left & rights

• labelled data + timestamped keys & feature derivations



Workflow



User workflow

explore.py Author compile.py run.py



Explore 

• Key word search “view” / “rating” etc.

• Search for features in a group

• Models using a feature

• Data Sources for a feature

• Features used in a model

• Feature group authors + last changed



Compile 

• Py is powerful

• Complete & Final representation

• Change Reasoning

• Hand-off to scala engine



Run.py - testing 

• Offline flows
• Join – training data generation
• StagingQuery – arbitrary ETL
• GroupBy – midnight accuracy – metrics style

• Online flows
• Lambda – batch + streaming 
• Fetching join & groupBy
• Uploading metadata



Model Server

Scheduling needs 

Feature 
Declaration

Streaming 
Updates

Batch partial 
aggregates

Feature 
Store

Model
Feature 
Client

Application 
Server



Run.py - scheduling 

• Airflow based - but flexible

• Joins: DAG each

• GroupBy: DAG per team
• Lambda Serving
• Streaming task is “heartbeat-or-restart”

• Staging Query: DAG per team



Repo structure

• staging_queries - free form etl

• group_bys – aggregation primitive

• joins – gathering multiple groupBy’s

•

Folder/module per “team” 
• teams.json 

• Compiled artifact folder 
Scripts - spark batch & streaming jobs + fetch online jar



Repo structure - one time setup

• Scripts 
• spark batch job submission

• spark streaming jobs 

• fetch online api implementation jar



Workflows  – offline

• Idempotency / Auto backfill
• Job always tries to fill in all of its unfilled range

• Airflow convention is task instance per date
• Re-use compute & Natural ML user-flow

• Staging Queries
• Free form ETL

• Spark SQL Based

• Join Backfills – already covered

• GroupBy Standalone Backfills



Workflows  – Online

• Read optimized materialized views
• Low latency  ~10ms, high QPS

• Based on
• Kafka 
• Spark Streaming 
• General KV Store API 



Online Integration API

• One time integration

• KV Store
• Point Read + Scan from timestamp
• Single Write + Bulk Write

• Streaming
• Decode Bytes into a Row in Chronon Schema
• Intersection of Avro & Parquet

Airflow Scheduling
• We provide airflow integration template



Perf Stats

• Serving
• Read: latency, qps, payload sizes - breakdown by groupBy
• Streaming Write: Freshness, qps, payload size
• Bulk write: Compute time, data sizes etc.

• Training data generation
• Compute time – breakdowns
• Row count



Data Stats

• Online offline consistency 
• Numerical: SMAPE
• Categorical: Inequality percentage
• Lists: Edit Distance

• Feature Quality
• Coverage
• Cardinality
• Distribution
• Correlation



Cases

• Online / Offline
• Backfilled / Logged
• PITC / Midnight accurate
• Events / Entities / Cumulative
• Windowed / Lifetime Aggregations
• Reversible / Non Reversible
• Single Column, Single Aggregation, Single window



Problem statement - Events PITC



Naive approach

Complexity?



Naive approach

Complexity?

N^2



Can we do better?
• sort + cursors

• Complexity? n*log(n)

• Distribute friendly?

• Use of subtraction - doesn’t work 

for max, min etc.

• Even better?



Some important observations
• Windows overlap a lot for a given key

• Label data is usually much smaller than raw data

• Fraction of keys that engage on the platform is small

• The fraction with labels could be even smaller.



Approaches
• Windows overlap a lot for a given key

• Break windows into reusable tiles.
• Label data is usually much smaller than raw data

• Use labels/queries to determine the tiles effectively
• Fraction of keys that engage on the platform is small

• Use a  compact approximate structure to filter out “most” of unwanted keys
• Bloom filter - false positives are okay, true negatives are not.
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Window tiling

• Hopping tail is common across all queries that fall into the head!

• The idea is to compute tails and heads separately.



Window tiling
• What if queries don’t fit in memory?

• Tiling can’t be dynamic(query dependent)

• Hops?

• Let’s examine window semantics



Window tiling

• We need to stitch together 
• Tail value
• Raw events in the head
• Queries in the head



Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)



Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]



Topology 1/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

distinct query heads
[key, distinct(round(ts, hop))]

GroupBy
[key, round(ts, hop), agg(payload) as hop]

join on key
(key, query_heads, hops)

join on key
(key, query_head, window_tail)



Topology 2/2

Queries
 (Key, ts)

Events
 (Key, ts, payload)

join on key
key, query_head: window_tail

group-by query heads
key, round(ts, hop): [ts]

distinct query heads
key, round(ts, hop): [(ts, payload)]

Join tails with queries & events
key, query_head: (window_tail, [query_ts], [event_ts, payload])

Put the window together
key, query_head: [query, window]



Window tiling - final

• Trade-off

• Moving too much data

• Evenly distributing work across machines



Resources

• Pig’s perf page
• VLDB 

• anything that has “groupjoin” on it.
• sketches

• Yahoo datasketches library
• cardinality estimation - CPC sketch
• frequent items 

• Bloom filters

https://pig.apache.org/docs/latest/perf.html#specialized-joins


• MPP compute - trino, clickhouse etc., traditional OLAP
• Don’t scale

• RDD lacks “stream one side of the join into the other WHILE aggregating”
• OLAP / MPP is actually streaming
• Not new / flink / beam / tf 

Opinions

Streaming

Micro 
Batch MPP

Uni-directional/DAG Iterative

Graph ML

Interactive 
Analytics BI Metrics Features

Page 
Rank

Social 
Hash … Model Parallel

All ReduceSQL Monadic/
DataFrame/RDD

Data 
Parallel



Appendix - Tree Tiling




