

Chronon

Airbnb's Feature Engineering Framework

Nikhil Simha nikhil.simha@airbnb.com

Announcements

You are in the right place!

Renamed to "Chronon" from zipline

Private Beta - user / contributor

If you are interested drop a mail to

nikhil.simha@airbnb.com or jack.song@airbnb.com

Cristian Figueroa

Haozhen Ding

Pengyu Hou

Vamsee Yarlagadda

Varant Zanoyan

Atul Kale

Jack Song

Haichun Chen

Nikhil Simha

Agenda

Goals and Requirements

API Overview

Concepts & Examples

Dependencies Overview

Integration guide

Goals - management

Uniform API

Python + Spark SQL

Online & Offline

Raw Data -> Training Data

Raw Data -> Feature Serving

Feature Repository

Compiled

Team based

Feature monitoring

Goals - API

Powerful & Composable Building blocks

Source types

Entities Events & Cumulative Events

GroupBy - Aggregation engine

Join - PITC joins

Staging Query

Arbitrary ETL to prepare data

Goals - computation

Log & Wait vs Backfill

Large models -> large training data ranges -> lot of waiting

New features are mostly derived from existing raw data

Realtime Features

Hardest systems problem in ML

Stream processing + Batch processing + Storage + Fetching Backfills

Non-Goals

- No Model Training or Serving
- Not for interactive exploration
 - Spark vs Clickhouse/Druid
 - Static usage is fine

Requirements

KV Store Bring-Your-Own Airflow Scheduler or BYO

Offline - problem statement (item recommendation)

user_id	timestamp
alice	2021-09-30 5:24
bob	2021-10-15 9:18
carl	2021-11-21 7:44

view_count_5h

From view stream

avg_rating_90d

• From ratings db table

<u>code</u>

Offline - problem statement

user_id	timestamp	views_count_5h	avg_rating_90d
alice	2021-09-30 5:24	10	3.7
bob	2021-10-15 9:18	7	4.5
carl	2021-11-21 7:44	35	2.1

Online - problem statement

user_id	timestamp	views_count_5h	avg_rating_90d
alice	2021-09-30 5:24	10	3.7
bob	2021-10-15 9:18	7	4.5
carl	2021-11-21 7:44	35	2.1

Time

Examples – E-Commerce platform

<u>Count</u> of <u>Item views</u> of a <u>user</u> in the <u>last 5 hours</u> – from a <u>item view stream</u> <u>Average rating</u> of an <u>item</u> in the <u>last 90 days</u> – from a <u>ratings table</u>

Count / Average – Aggregation operations Item Views/Rating – Aggregation Inputs User/item – Aggregation Key Last X days – Aggregation Window Ratings Table/ Item View Stream – Data Source Accuracy - Real-time or Daily

Data Sources

Sources - Events

- Each partition contains data/events that occur in [ds, ds + 1]
- fct sources/dim sources
- PITC -> hive table
- materialized view -> topic

Sources - Entities

- Each partition contains data for all entities as of ds (date_string)
- DB Table snapshots
 - Sqoop
- Mutations! (CDC)
 - Mutations Table & a Mutation Topic
 - Debezium + Kafka
- PITC -> snapshot table + mutation table
- materialized views -> snapshot table + mutation topic

Sources - Cumulative

Insert only tables

Each new partition is a superset of any old partition

- Latest partition is enough to backfill features at arbitrary points in time
- No deletes/updates mutations table not needed
- Events in db tables

Sources - Why?

Error-prone date wrangling

```
fct/event scan = partition_of(min_query_ts - max window)
cumulative scan = latest_partition
entity scan
snapshot_table - partition_of(min_query_ts) - 1
mutation_table - partition_of(min_query_ts)
```

Optimization hints!

GroupBy

Concepts - GroupBy

- Group of Features derived from the same/similar sources of data
 - Data Source
 - From + Where + Select powered by spark sql
 - Keys
 - Aggregations
 - Input
 - Operation
 - Window optional & hourly or daily
 - Bucketing ratings by category Map [category -> rating]

Concepts - Aggregations

SUM, COUNT, AVG, VARIANCE, MIN, MAX, TOP_K, BOTTOM_K, FIRST, LAST, FIRST_K, LAST_K, APPROX_DISTINCT, FREQUENT_ITEMS, HISTOGRAM...

Commutative and associative - order independent & mergeable

Sometimes reversible - CDC updates

Freshness

Memory intensive

Windows – Hopping

Staleness

- As stale as the hop size
- Memory Efficient

• One partial per hop

Query Time

Windows – Sawtooth

Windows – Sawtooth

Freshness

• Writes are taken into account immediately

• Memory

Partial aggregates per hop

Windows – Sawtooth

Catch

sum/count vs others

Consistency

Query Time

Join

Concepts - Join

user_id	timestamp
alice	2021-09-30 5:24
bob	2021-10-15 9:18
carl	2021-11-21 7:44

view_count_5h

From view stream

avg_rating_90d

• From ratings db table

Concepts - Join

user_id	timestamp	views_count_5h	avg_rating_90d
alice	2021-09-30 5:24	10	3.7
bob	2021-10-15 9:18	7	4.5
carl	2021-11-21 7:44	35	2.1

Concepts - Join

Join multiple GroupBy-s (feature groups) together

- Decide to show a particular user a particular item likelihood to buy
 - X User Features groups
 - Y Item Features
 - Z (User, Item) Features– past interactions
- Gather both Online & Offline
- Left & rights
 - labelled data + timestamped keys & feature derivations

Workflow

User workflow

Explore

- Key word search "view" / "rating" etc.
- Search for features in a group
- Models using a feature
- Data Sources for a feature
- Features used in a model
- Feature group authors + last changed

Compile

- Py is powerful
- Complete & Final representation
- Change Reasoning
- Hand-off to scala engine

Run.py - testing

Offline flows

- Join training data generation
- StagingQuery arbitrary ETL
- GroupBy midnight accuracy metrics style
- Online flows
 - Lambda batch + streaming
 - Fetching join & groupBy
 - Uploading metadata

Scheduling needs

Run.py - scheduling

- Airflow based but flexible
- Joins: DAG each
- GroupBy: DAG per team
 - Lambda Serving
 - Streaming task is "heartbeat-or-restart"
- Staging Query: DAG per team

Repo structure

- staging_queries free form etl
- group_bys aggregation primitive
- joins gathering multiple groupBy's

Folder/module per "team"

- teams.json
- Compiled artifact folder

Scripts - spark batch & streaming jobs + fetch online jar

Repo structure - one time setup

Scripts

- spark batch job submission
- spark streaming jobs
- fetch online api implementation jar

Workflows – offline

- Idempotency / Auto backfill
 - Job always tries to fill in all of its unfilled range
 - Airflow convention is task instance per date
 - Re-use compute & Natural ML user-flow
- Staging Queries
 - Free form ETL
 - Spark SQL Based
- Join Backfills already covered
- GroupBy Standalone Backfills

Workflows – Online

- Read optimized materialized views
 - Low latency ~10ms, high QPS
- Based on
 - Kafka
 - Spark Streaming
 - General KV Store API

Online Integration API

- One time integration
- KV Store
 - Point Read + Scan from timestamp
 - Single Write + Bulk Write
- Streaming
 - Decode Bytes into a Row in Chronon Schema
 - Intersection of Avro & Parquet
 - Airflow Scheduling
 - We provide airflow integration template

Perf Stats

- Serving
 - Read: latency, qps, payload sizes breakdown by groupBy
 - Streaming Write: Freshness, qps, payload size
 - Bulk write: Compute time, data sizes etc.
 - Training data generation
 - Compute time breakdowns
 - Row count

Data Stats

- Online offline consistency
 - Numerical: SMAPE
 - Categorical: Inequality percentage
 - Lists: Edit Distance
 - Feature Quality
 - Coverage
 - Cardinality
 - Distribution
 - Correlation

Cases

- Online / Offline
- Backfilled / Logged
- PITC / Midnight accurate
- Events / Entities / Cumulative
- Windowed / Lifetime Aggregations
- Reversible / Non Reversible
- Single Column, Single Aggregation, Single window

Problem statement - Events PITC

user_id	timestamp	views_count_7d
alice	2021-09-30 5:24	10
bob	2021-10-15 9:18	7
carl	2021-11-21 7:44	35

Naive approach

```
SELECT user, query.timestamp as query_timestamp, COUNT(view_id) as
view_count_7d
FROM queries JOIN views ON
  queries.user = views.user AND
  view.timestamp < queries.timestamp AND
  view.timestamp >= (queries.timestamp - 7d) -- 7 * 24 * 3600 * 1000
milliseconds
GROUP BY user, query_timestamp
```

Complexity?

Naive approach

```
result = []
for query_ts in queries:
    view_count = 0
    for view_ts in views:
        if view_ts < query_ts and view_ts > query_ts - millis_7d:
            view_count += 1
        result.append((query_ts, view_ts))
# result now contains the desired data
```

Complexity?

N^2

Can we do better?

```
result = []
start = 0
end = 0
count = 1
sorted_views = sorted(views)
for query_ts in sorted(queries):
    query_start = query_ts - 7 * day_millis
    # scan forward the start cursor and decrement the counter
    while start < len(sorted_views) and sorted_views[start] <</pre>
query_start:
        start += 1
        count -= 1
    # scan forward the end cursor and increment the counter
    while end < len(sorted_views) and sorted_views[end] < query_ts:</pre>
        end += 1
        count += 1
    result.append((guery_ts, count))
# result now contains desired data.
```

sort + cursors

Complexity? n*log(n)

Distribute friendly?

Use of subtraction - doesn't work

for max, min etc.

Even better?

Some important observations

- Windows overlap a lot for a given key
- Label data is usually much smaller than raw data
- Fraction of keys that engage on the platform is small
 - The fraction with labels could be even smaller.

Approaches

- Windows overlap a lot for a given key
 - Break windows into reusable tiles.
- Label data is usually much smaller than raw data
 - Use labels/queries to determine the tiles effectively
- Fraction of keys that engage on the platform is small
 - Use a compact approximate structure to filter out "most" of unwanted keys
 - Bloom filter false positives are okay, true negatives are not.

Tiling windows

Window tiling

- Hopping tail is common across all queries that fall into the head!
- The idea is to compute tails and heads separately.

Window tiling

- What if queries don't fit in memory?
 - Tiling can't be dynamic(query dependent)
- Hops?
 - Let's examine window semantics

Window tiling

- We need to stitch together
 - Tail value
 - Raw events in the head
 - Queries in the head

Window tiling - final

- Trade-off
 - Moving too much data
 - Evenly distributing work across machines

Resources

- Pig's <u>perf page</u>
- VLDB
 - anything that has "groupjoin" on it.
- sketches
 - Yahoo datasketches library
 - cardinality estimation CPC sketch
 - frequent items
 - Bloom filters

Opinions

- MPP compute trino, clickhouse etc., traditional OLAP
 - Don't scale
- RDD lacks "stream one side of the join into the other WHILE aggregating"
- OLAP / MPP is actually streaming
- Not new / flink / beam / tf

Appendix - Tree Tiling

```
def generateTiles(left: Int, right: Int, tileConsumer: (Int, Int) => Unit): Int = {
  // find m, i such that
  // (m + 1) * (2 power i) < left <= m * (2 power i) <= right < (m + 1) * (2 power i)</pre>
  val powerOfTwo = 1 << (31 - Integer.numberOfLeadingZeros(left ^ right))</pre>
  val splitPoint = (right/powerOfTwo) * powerOfTwo
  // tiles on the left side
  var leftDistance = splitPoint - left
  var rightBoundary = splitPoint
  while(leftDistance > 0) {
     val maxPower = Integer.highestOneBit(leftDistance)
     tileConsumer(rightBoundary - maxPower, rightBoundary)
     rightBoundary -= maxPower
     leftDistance -= maxPower
  // tiles on the right side
  var rightDistance = right - splitPoint
  var leftBoundary = splitPoint
  while(rightDistance > 0) {
     val maxPower = Integer.highestOneBit(rightDistance)
     tileConsumer(leftBoundary, leftBoundary + maxPower)
     leftBoundary += maxPower
     rightDistance -= maxPower
  splitPoint
```

