
By Configurations, Code Optimizations and Custom Data Source

1

Kineret Raviv
Principal Software Developer, Akamai

Improving Spark Structured Streaming
Application Processing Time

Nir Dror
Principal Performance Engineer, Akamai

About Us

Nir Dror

• Principal Performance Engineer at Akamai

• Tuning and troubleshooting performance issues in

Spark applications since 2016

2

Nir Dror

Kineret Raviv

• Principal Software Engineer at Akamai

• 8+ years of experience in Big data technologies

(Spark, Hadoop, Map-Reduce)

Kineret Raviv

http://www.linkedin.com/in/ndror
http://www.linkedin.com/in/kineretm

Agenda

• Overview

• Custom Spark Data Source

• Performance Tuning

• GC Analysis

3

Overview

About Akamai Technologies

5

● Largest CDN services provider and

cloud security solutions

● 350K servers

● 8B requests per day

● ~ 30% of the global internet traffic

Challenge: Dealing with a massive amount of data

About CSI Group (Cloud Security Intelligence)

6

● Platform for collecting, analyzing,

and distilling quality security

intelligence information

● ~ 6GB/s incoming traffic

● ~ 100B events per day

The product

Goal: Trigger alerts based on security events customer’s definitions

7

8

Spark resources: Driver - 1 core, 4G memory,
Executors: 200 instances, 2 cores, 2G memory

Other utilities: Java 11, Spark-on-k8s-operator

Avro

Spark Data Source

Input Architecture

10

Queue with “pointers” to the blob and metadata. For example:
{
"path": "/2022-06-13/1655112426123-waf-triggers-

dlr/9a38250e-5210-476e-9fcd-e05815df7896.avro.deflate",
"size": 7526435,
"recordsCount": 9686,
"statistics": {"1655110800000": 9686}

},
{
"path": "/2022-06-13/1655112419993-waf-triggers-

dlr/95047b9f-14cb-48a3-a015-98784534faaa.avro.deflate",
"size": 10586605,
"recordsCount": 14750,
"statistics": {"1655110800000": 14750}

}

The actual avro files

Read Phase: Spark Data Source Overview

The Data Source API allows us to read data from different sources in a
distributed way.

● Built in standard sources (json, parquet, jdbc, orc, libsvm, csv, text):

spark.read.format("parquet").load("myFile.parquet")

spark.read.json("myFile.json")

● Third party sources by extending this API

spark.read.format("org.apache.spark.sql.cassandra")

● Our custom data source
spark.readStream().format("com.akamai.csi.connectors.KafkaBlobDataSource")

11

PlanInputPartitions()

• Initialize Kafka consumer (in class level)

• In each iteration poll messages until:

• Catch Up mode (high kafka lag) - the total microbatch memory provided by the

user is reached (sum on “size” property)

• Regular mode - the queue is empty

• Optimization 1: filter message according to TTL - saves I/O

• Divide the messages to partitions

• Optimization 2: Partitioning Strategies

13

Partitioning Strategies

• Single file per partition

14

Goals: Efficiency and avoiding data skew

High number of tasks

Task 1
File A
1M

Task 2
File B
14M

Task 3
File C
0.5M

Task 4
File D
10M

Task 5
File E
10M

Task 6
File F
10M

Task 7
File G
1M

Partitioning Strategies

15

• Multiple files by size of partition

Goals: Efficiency and avoiding data skew

of tasks is not fixed => Resources are not fully used

Task 1
Files A,B,C
49M

Task 2
File D
47M

Task 3
Files E,F
48M

Task 4
File G
45M

Partitioning Strategies

16

• Multiple files by number of tasks

Goals: Efficiency and avoiding data skew

Task 1
Files A,B,C
60M

Task 2
Files D,E
58M

Task 3
Files F,G
61M

Optimal

Dynamic number of tasks

17

Challenge: Reduce throttling errors

Solution: read parallelism according to Kafka lag

Example: 400 available cores

val numOfPartitions = if (lag > 20K) 2000 else 300

Custom Spark Data Source - Summary

● Try to read only the relevant data in the executors

● Plan partitions equal in size as much as possible

● If the source supports, implement supportsPushDownAggregates/

SupportsPushDownFilters/SupportsPushDownRequiredColumns

interfaces

18

Performance Tuning &
GC Analysis

Optimal Number of Partitions

Number Of Data Read Partitions = Total Number Of Cores (400):

20

12s 400/400

2s 6s 7s 7s 12s

● Challenge: Choosing the optimal number of partitions for reading 100 GB
of uncompressed data

Optimal Number of Partitions

Number Of Data Read Partitions = 2 * (Total Number Of Cores)

21

7s 800/800

2s 3s 3s 3s 4s

Optimal Number of Partitions

Number Of Data Read Partitions = 3 * (Total Number Of Cores)

22

8s 1200/1200

1s 2s 2s 2s 4s

Optimal Number of Partitions

23

● Conclusion: Creating smaller (balanced) tasks by increasing the
number of partitions we used to read the data (to be higher than
the number of cores we have) helped to reduce the read time by
almost 50%!

Garbage Collection

● Enabling GC logs (and some more useful information):

○ Java Version <= 8:
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -
XX:+PrintTenuringDistribution

○ Java Version > 8:
-Xlog:gc*,gc+ref=debug,gc+heap=debug,gc+age*=trace:file=<gc-file-path>
:tags,uptime,time,level

24

Garbage Collection - Analysis

25

Garbage Collection - Analysis

26

Garbage Collection - Analysis

27

Garbage First (G1) GC

28

● Default GC from Java >= 9
To enable it in previous versions, add the following to your driver / executors: -XX:+UseG1GC

(Photos by
oracle.com)

Heap Structure Before G1

https://www.oracle.com/technetwork/tutorials/tutorials-1876574.html

Garbage First (G1) GC

29

● Required much more tuning when using it in earlier Java versions. For
example:

-XX:+UseG1GC
-XX:ConcGCThreads=5
-Xms12g
-XX:NewSize=6g
-XX:MaxTenuringThreshold=5

● Works faster in Java >= 10 because of the ability to use multiple threads for
full GC

● Using G1 GC in newer Java versions can boost your application’s
performance

Garbage Collection - Summary

30

● Adding GC logs to your Spark application is very simple!

● Analyzing your application’s GC logs can help to identify memory issues

● Important metrics to notice when you analyze GC logs:
○ Throughput
○ Average & Max GC pause time
○ Heap size after GC

● G1 GC is more flexible in terms of memory usage compared to the older
Garbage Collectors. Consider using it (especially in Java >=10) if possible

31

Thank
You

Kineret Raviv
Principal Software Developer, Akamai

Nir Dror
Principal Performance Engineer, Akamai

