
1

Implementing an End-to-End 
Demand Forecasting Solution 
Through Databricks and 
MLflow

Ivana Pejeva
Cloud Solution Architect, Microsoft

Yoshi Coppens
Data Engineer, element61



2

Outline

• Problem Setting

• Ingestion

• Cleaning, transforming, enriching

• Model selection and training

• Scoring

• Feeding it back to the client's 

system

• Running the model in production



Problem setting

3



Scope of Project

Bakery 
chain

Location A

Bread A

B

B
C

D

E

How much to sell of Bread A in 
Location A

C



Ingestion

5



Ingesting the files
XML files on an FTP server??

• The provided salesdata is made available every day on an FTP-server

• File format is XML

• Azure Data Factory used to copy the binary files from FTP server

• Use spark-xml package in Databricks to translate from XML
https://mvnrepository.com/artifact/com.databricks/spark-xml_2.12

6

https://mvnrepository.com/artifact/com.databricks/spark-xml_2.12


Ingesting the files
Structure of Data Lake and ingestion

7



Ingesting the files
Learnings

Ideally the data gets fed into your systems in an optimal way but when you 
cannot choose the setup, you have to make it work, ideally not having to 
incorporate more and more different tools

8

Combining Azure Data Factory with Azure Databricks 
gives you quite a lot of power



Cleaning, 
transforming,
enriching

9



Using extra data sources
Client based

10

Store Information Product Information Store Holiday
Information

Competitor Holiday
Information



Using extra data sources
External sources

11



Feature Engineering

• Feedback from client is important
• ‘felt that model was too slow with incorporating a big shift in demand trend’

• incorporate Sales of last week

• Analyzing performance is important
• ‘we saw that there seemed to be a bias to underestimate usually’ 

• when they sell 10 but only had an inventory of 10 vs selling 10 when there is 20 delivered, huge 
difference => incorporating a SoldOut factor

12



Model Selection 
and Training

13



Picking a ML model
Learnings

• Very dependent on data and problem 
when one is performing better than 
the other

• Big advantage in ML => make a joint 
model from multiple time series

ARIMA vs ML

14

• Focus was not on complicated ML due 
to time constraints

• We wanted some level of 
interpretability for the client

Picking LightGBM



• Yes, can distinguish
some fungible groups, 
such as Bread, 
Confisserie, Small 
Cakes 

1 Model per product group

• Difficult, pain au 
chocolat vs croissant 
vs éclair?

1 Model for all products

Model Granularity

• Features such as 
Adoption Level, 
Location, Population, 
Events etc.

• We did not get the
required information

1 Model for all stores

15



Making use of parallelism
Training multiple models at once using Pandas UDFs

• We have multiple productgroups and multiple stores => 248 models

• Spark MLLib is not made for training multiple models at once

• A for loop of course is also very unperformant

• Grouped Map Pandas UDFs! For both Training and Scoring!

16

df
.groupBy(['StoreKey', 'ProductGroupKey’])
.applyInPandas(trainingUDF, schema = schema_training)



Tracking Performance and experiments
Introducing MLFlow

17
Source: Spark AI Summit – Richard Zang & Denny Lee



Tracking Performance and experiments
Continued MLFlow – code for training

18

def trainUdf (pandasDf:object):

...

with mlflow.start_run(experiment_id=experiment_id):

gbm = lgb.train(...)

X_test[‘pred’] = gbm.predict(...)

...

mlflow.log_metric("MAPE", MAPE)

...

mlflow.lightgbm.log_model(lgb_model = gbm,
artifact_path=f”{storeKey}_{productGroupKey}_model”, 
registered_model_name=f”{storeKey}_{productGroupKey}_model”)

...



Tracking Performance and experiments
Continued MLFlow – code for scoring

19

def predictUdf (pandasDf:object):

...

model_name = f”{storeKey}_{productGroupKey}_model”

model_uri = f"models:/{model_name}/Production“

model = mlflow.lightgbm.load_model(model_uri)

predictions = model.predict(...)

...



Tracking Performance and experiments
Databricks - Experiments

20



Tracking Performance and experiments
Databricks - Models

21



Scoring

22



Which metrics to use?
Can’t go wrong with MAPE

• MAPE = Mean Absolute Percentage Error

• Discussion with client: Overestimating is better than underestimating!
• Option 1: Change our metric to punish missing sales harder than having leftovers (using production cost 

and opportunity loss)

• Option 2: Instead of using the quantity sold, use quantity + wanted margin

23



Working with reliability buckets

• We want to know for which products we can have a reliable predictions

24

What can we predict 
well What is okay What is not 

necessarily great



Feeding it back 
into the
client’s systems

25



Feeding it back into the client’s systems
XML and FTP again!

• Their ERP system needs XML files again! 
• Translate Delta Lake tables back to XML using spark-xml package in Databricks

• XML files need to be transferred back to the FTP server
• Azure Data Factory actually cannot do this “out-of-the-box”, can only copy to SFTP

• Introduce Azure Logic App which can use FTP as a sync and has a lot more data connectors

26



Feeding it back into the client’s systems

27



Running the 
model in 
production

28



• For old stores, new data 
gets less and less 
important

• For new stores, it is the 
opposite

• They are expanding and 
for consistency's sake 
training every week!

Importance of new data

• The cost of training is 
not negligible

• Rather more frequent
scoring than more 
frequent training

Keep control of cost

Frequency of training and scoring
Multiple factors matter

• Internal system can
have big delays

• Forecast is needed 
every day

• Weather has a big 
impact so scoring
every day!

Data can be weeks late

29



Monitoring and Alerting
Mailing through Logic App, orchestrated in Data Factory

• Due to operational difficulties,
extensive checks needed => Mail

• Client input data not getting updated
=> Mail

• Follow up for new stores being added

Data missing

30

• Big improvement in MAPE => Mail

• Deteriorating MAPE vs last => Mail

• Future: Model Drift Detection

Monitoring models



Conclusion

31



Conclusion

32

• In a couple of days we can get a Demand Forecasting 
model into production

• Pandas UDFs can help us scale hugely in the model 
training

• MLFlow is a great MLOps tool for tracking, registering 
Machine Learning models



33

Ivana Pejeva & Yoshi Coppens

Thank you


