
1

Jean-Yves Stephan
Senior Product Manager, Spot by NetApp

How to make Spark on
Kubernetes Run Reliably
on Spot Instances

Hudson Buzby
Solutions Architect, Spot by NetApp

/whoami
A few words about us!

Previously:

● 2015-2018: Databricks
○ Software engineer
○ Technical lead for Spark infrastructure

● 2018-2021: Data Mechanics
○ Co-Founder & CEO
○ Acquired by Spot by NetApp in June 2021

Jean-Yves Stephan
Senior Product Manager, Spot by NetApp

2

Hudson Buzby
Spark Solutions Architect, Spot by NetApp

Previously:

● 2017-2021: Data engineer working with
Apache Spark and other data tech
○ Namely
○ Vice Media
○ Eataly

Our agenda for today
How to make Spark on k8s run reliably on spot instances

● An introduction to Spark on Kubernetes

○ Architecture, benefits, our background with it

● How to avoid spot instances interruptions as much as possible

○ Running driver on on-demand nodes, picking best spot markets (AZ, instance type)

● How to handle spot instances interruptions as gracefully as possible

○ Spark 3.1 executor decommissioning, Spark 3.2 PVC reuse when executor is lost

● Conclusion - Future works and best practices with Spark on Kubernetes

3

An introduction
to Spark on
Kubernetes

4

Kubernetes is a new cluster manager for Spark

● Standalone: built-in, limited functionalities

● Apache Mesos: deprecated as of Spark 3.2.0

● Hadoop YARN: most widely used today

● Kubernetes: most popular among new deployments

5

The Spark on Kubernetes Journey

6

Feb 2018 - Spark 2.3
Initial support released
for Spark on Kubernetes

June 2020 - Spark 3.0
Dynamic Allocation, Local
code upload, Kerberos
Support

Oct 2021 - Spark 3.2
Dynamic PVC mounting and reuse,
Faster S3 Writes (Magic Committer
enabled)

Nov 2018 - Spark 2.4
Client Mode, Volume
Mounts, PySpark and R
support

March 2021 - Spark 3.1
Spark on Kubernetes generally available
Graceful node shutdown, NFS mounts,
Dynamic Persistent Volume Claims

Spark on YARN: architecture & pain points

Global Spark version and shared libraries
● You’ll have a Spark 2.4 cluster, a Spark 3.0

cluster, a Spark 3.1 cluster.
● Transient clusters are recommended for

stability, but increase costs.

No native Docker image support
● Environment is built from AMIs and bash

scripts, flaky runtime library installation
● Debugging is painful - there’s no way to run

Spark locally, environment is subtle

Resource Overhead
● Slow startup time
● YARN master node, YARN Node Mgr are

JVM processes using a lot of resources.

Spark on Kubernetes: architecture & benefits

8

Native Dockerization
● Simpler dependency management
● Reliable executions across environments

(locally during development, staging, production)
● Faster startup time

A single long-running cluster
● Quick to scale up (and down) based on load
● Mix different Spark versions
● Mix Spark and non-Spark apps
● Mix use cases (notebooks, batch/streaming jobs)

A standard, agnostic infrastructure layer
● Reduce lock in
● Simplify your operations
● Leverage the open-source tools from the

cloud-native ecosystem

The Pros & Cons of Spark on Kubernetes

● Better dev experience with Docker.

● An ecosystem of cloud-native tools.

● Effective resource sharing enabling
significant savings on cloud costs.

● k8s can be the standard infrastructure
layer across your entire stack: flexible,
cloud- and vendor-agnostic

● Data teams should not have to
become Kubernetes experts.

● Kubernetes introduces powerful but
complex abstractions, and requires the
maintenance of many components.

● The support for Spark-on-Kubernetes
on leading Spark products is absent or
barebone.

The pros 👍

9

The cons 👎

https://emojipedia.org/thumbs-up/
https://emojipedia.org/thumbs-down/#:~:text=A%20thumbs%2Ddown%20gesture%20indicating,to%20Emoji%201.0%20in%202015.

User

OCEAN FOR APACHE SPARK CLUSTER

COMPUTE - CUSTOMER CLOUD ACCOUNT

Driver, Spark 3.1 Spark executor pod

Spark executor pod

Spot console

REST API
Driver, Spark 3.2 Spark executor pod

Spark executor pod

STORAGE - CUSTOMER CLOUD ACCOUNT

SPOT.IO BACKEND

Jupyter Notebooks

Schedulers

Optimization logic

Our background - Ocean for Apache Spark
Developer friendly, continuously scaled & optimized Spark on k8s

10

How to avoid
spot instance
interruptions

11

Spot instances

12

Up to 90% cheaper than their on-demand counterparts

● Available on AWS, GCP, and Azure

● Availability is not guaranteed
○ When you ask to launch a spot VM, the

cloud provider can deny this request
○ Once a spot VM is launched, it can be

reclaimed, at any time and at short notice

● Spot price varies in real-time
○ Based on supply & demand
○ Across 100s of independent spot markets:

■ Cloud region
■ Availability zone within the region
■ Instance type

Example spot instance price history
(one instance type, various AZs, 3 months)

How does Spark cope with spot interruptions?
Best practice: Spark driver should run on an on-demand node

13

If you lose the Spark driver:

• The Spark app abruptly fails, and
must be restarted from scratch.

If you lose a Spark executor, the app
will have to recompute:

• The tasks which were in progress
when the executor died

• Shuffle files: output of previous
tasks stored on the executor

• Cached data

Shuffle files illustration

Best practice: run driver OD, execs on Spot
You can achieve this in k8s using node selectors

14

● Example on AWS (EKS) and using cluster-autoscaler
○ Define node labels and AutoScaling Group tags

● Add the relevant node selectors to your pods specs:

Node label ASG tag

lifecycle: spot k8s.io/cluster-autoscaler/node-template/label/lifecycle: spot

lifecycle: ondemand k8s.io/cluster-autoscaler/node-template/label/lifecycle: ondemand

spec:
 driver:
 nodeSelector:
 lifecycle: ondemand
 executor:
 nodeSelector:
 lifecycle: spot

Driver pod (2 core)

m5.large on-demand
instances (2 cores each)

App spec
{
 “driver”: {
 “instanceSelector”: “m5.large”,
 “cores”: 2,
 “spot”: false
 },
 “executor”: {
 “instanceSelector”: “r5.xlarge”,
 “cores”: 4,
 “instances”: 6,
 “spot”: true
 }
}

Exec pod (4 cores)

r5.xlarge spot instances
(4 cores each)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

This is how your cluster may look like
But this isn’t very stable yet

● If the r5.xlarge instance isn’t
available in the spot market, your
executors will be stuck in pending
state, and your app won’t run
(potentially for hours)

● You may lose all your Spark
executors at once (which makes
recovery harder).

15

Solution: pick the best possible spot market
Best availability zone, best instance type, fallback to OD

16

m5.large, on-demand

Driver pod (1 core)

m5.large on-demand
instances (2 cores each)

Blue Application
{
 “driver”: {
 “instanceSelector”: “m5”,
 “cores”: 1,
 “spot”: false
 },
 “executor”: {
 “instanceSelector”: “r5”,
 “cores”: 4,
 “spot”: true,
 “instances”: 8
 }
}

Orange Application
{
 “driver”: {
 “instanceSelector”: “m5”,
 },
 “executor”: {
 “instanceSelector”: “r5”,
 “instances”: 10
 }
}

Driver pod (1 core)

Exec pod (4 cores)

r5.xlarge spot instances
(4 cores each)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

r5.2xlarge spot instances
(8 cores each)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

r5.8xlarge spot instances
(32 cores each)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

Exec pod (4 cores)

This is how your cluster may look like

17

Limitation: Avoid cross-AZ data transfer
Co-localize all pods of a given Spark app on the same AZ

18

● The AZ selection should be done once upon Spark application
submission, so that the driver and the executors pods all go to the
same AZ.

● Otherwise, you will suffer from cross-AZ data transfer:
○ Which hurts shuffle performance significantly
○ And cloud providers charge a fee for this

● The additional flexibility granted by spreading executors across
multiple AZs is not worth the penalty of cross-AZ transfer.

We ran an experiment to measure the impact

Same test Spark workload:

● 1 driver (1 core, on-demand), 10 executors (4 cores each, spot)
● Spark executor task consist of sleeping for 55 minutes

○ Such as the application run in about one hour, if no spot interruption occurs.

Run every hour for 2 weeks during business hours (9-5) under 2 settings:

● Static: Availability zone hardcoded, instance type hardcoded (m5.xlarge)
● Optimized: AZ flexible, instance type flexible within m5 family

Under 2 different configurations

19

Experiment results
Spot market optimization avoids 79% of spot interruptions

20

of Spark apps
that ran

of execs
launched

Avg # of spot kills
per application Avg app duration

Static
configuration
(m5.xlarge)

139* 1817 3.07 1 hour 20 min
(+20 min vs ideal)

Optimized
configuration
(m5 family)

147 1567 0.65 1 hour 5 min
(+5 min vs ideal)

*Sometimes, the applications with a hardcoded configuration to run on m5.xlarge spot instances did not run at all, due to a
lack of spot nodes availability.

-79%

How to handle
spot instances
interruptions

21

Since Spark 3.1: Graceful Exec Decommissioning

● Spark 3.1, k8s-only feature to gracefully handle exec termination during spot interruptions

● Before interrupting a spot instance, cloud providers give a notice:
○ Termination notice: 2 min on AWS, 30s on GCP, 30s on Azure
○ This signal can be intercepted by a NodeTerminationHandler (k8s DaemonSet)
○ The daemonset then sends a message to the executor, which sends a message to the driver

● The driver then does the following:
○ Stop scheduling task on the executor which is going to go away
○ Do not count task failure on this executor against the maximum number of retriable failures
○ Move the shuffle files and cached data from this executor to another executor
○ Update the state of shuffle files location accordingly

Node 1

Node 3

Spark Driver

Executor 1

Shuffle

Cache

Termination Handler

Node 2

Executor 2

Shuffle

Cache

Termination Handler

Termination Handler

Node 1

Node 3

Spark Driver

Executor 1

Shuffle

Cache

Termination Handler

Node 2

Executor 2

Shuffle

Cache

Termination Handler

Termination Handler

1. Termination
Handler notices
that the node is
going to be
spot-killed in
120 seconds.

Node 1

Node 3

Spark Driver

Executor 1

Shuffle

Cache

Termination Handler

Node 2

Executor 2

Shuffle

Cache

Termination Handler

Termination Handler

1. Termination
Handler notices
that the node is
going to be
spot-killed in
120 seconds.

2. The Spark driver blacklists exec 1. New tasks are not
scheduled on it anymore . When a task running on exec 1 fails, it
does not count against max # of failures.

Node 3

Spark Driver

Node 2

Executor 2

Shuffle

Cache

Termination Handler

Termination Handler

Shuffle

Cache

3. The Spark application can continue with minimal impact from the
node / executor loss. We didn’t lose any shuffle or cached data!

26

Node 1

Executor 1

Termination Handler

1. Termination
Handler notices
that the node is
going to be
spot-killed in
120 seconds.

2. The Spark driver blacklists exec 1. New tasks are not
scheduled on it anymore . When a task running on exec 1 fails, it
does not count against max # of failures.

Spark 3.1 - Graceful Exec Decommissioning

How to enable this feature:
● Install NodeTerminationHandler for your cloud provider as a k8s daemonset
● Turn on the following configuration flags:

spark.decommission.enabled
spark.storage.decommission.rddBlocks.enabled
spark.storage.decommission.shuffleBlocks.enabled
spark.storage.decommission.enabled

Limitations:
● Very large shuffle files may not have enough time to be migrated
● If many executors get spot-killed at the same time, we may lose some shuffle files

○ For example the driver learns that exec-1 is decommissioned, decides to move files to exec-2, and then the
driver learns that exec-2 is decommissioned too

○ This gives another argument in favor of spreading executors across multiple spot markets (“do not put all
your eggs in one basket”)

Graceful Exec Decommissioning - Experiment
• We ran workloads that produced a significant amount of shuffle files on the executors.

• We simulated the process of receiving a spot kill by detaching the nodes containing the
executor pods from the cluster, with a grace period of 120 seconds (same as AWS)

• Using the Storage tab in the Spark UI and parsing information from the driver and
executor logs, we could measure
• The data stored on the executors prior to detachment
• The data moved from one executor to another during decommissioning
• The time Spark spent moving files

• We tested with 4-core executors across different instance types (m5, m5d, i3, …)

• On average, Graceful Executor Decommissioning moved ~15GB/minute of shuffle
data on regular instances, and 35-40GB of data/minute on SSD-backed instances.

28

Since Spark 3.2: Executor PVC Reuse

● Since Spark 3.1, it’s possible to configure Spark to
dynamically provision and mount Persistent Volume
Claims (PVCs).
○ But the PVC and executor share the same fate.

● As of Spark 3.2, PVCs mounted onto executors can
survive the removal of its original executor, to be
mounted on a new executor instead.
○ This means the shuffle files can be recovered

after a spot kill, or even another failure (such
as an OutOfMemory error).

Since Spark 3.2: Executor PVC Reuse

How to enable this feature:
● Configure dynamic PVCs (see open-source documentation, there are many possibilities)
● Turn on the following configuration flags:

spark.kubernetes.driver.reusePersistentVolumeClaim
spark.kubernetes.driver.ownPersistentVolumeClaim

Limitations:
● This feature is not compatible with using local NVMe based SSDs for shuffle files (PVCs are typically backed by

remote volumes such as EBS)
○ Local NVMe based SSDs offer 5-10x performance improvement for shuffle-heavy workloads

● In our tests, a race condition sometimes causes a PVC not to be re-used immediately, so the shuffle file recovery
does not work every time. This can probably be fixed.

● This feature requires a bit more configuration than the graceful decommissioning feature.

Conclusion:
Future works and
best practices
for Spark on k8s

31

How to make Spark run reliably on spot VMs

32

90% cost savings without trading off performance or stability

● Driver should run on demand, executors on spot
● Optimize the spot market to avoid 80% of spot kills

○ Pick the best AZ (and use it for the entire app)
○ Spread executors across multiple spot instance types, based on real time spot

market dynamics

● Gracefully handle spot kills by proactively moving shuffle files when a
spot termination occurs

What’s new in Spark 3.3 for Spark-on-k8s

● [SPARK-37810] Executor Rolling
○ When enabled, Spark can now forcibly decommission an executor at a certain

interval. This is useful for long-running jobs (e.g. streaming) to avoid issues related
to state accumulating on an executor (disk full, memory issues, stragglers, …).

● [SPARK-36057] Custom k8s Scheduler support (Volcano, Yunikorn)
○ Enable YARN-like capabilities such as queue, gang scheduling, etc

33

https://issues.apache.org/jira/browse/SPARK-37810
https://issues.apache.org/jira/browse/SPARK-36057

34

Thank you
Jean-Yves Stephan
Senior Product Manager, Spot by NetApp

Hudson Buzby
Solutions Architect, Spot by NetApp

Learn More about Ocean for Apache Spark
https://spot.io/products/ocean-apache-spark/

https://spot.io/products/ocean-apache-spark/

APPENDIX

35

36

Abstract - Duration 40 min
Since the general availability of Apache Spark’s native support for running on Kubernetes with Spark 3.1 in March 2021, the Spark community is
increasingly choosing to run on k8s to benefit of containerization, efficient resource-sharing, and the tools from the cloud-native ecosystem.

Data teams are faced with complexities in this transition, including how to leverage spot VMs. These instances enable up to 90% cost savings but
are not guaranteed to be available and face the risk of termination. This session will cover concrete guidelines on how to make Spark run reliably on
spot instances, with code examples from real-world use cases.

Main topics:
• Using spot nodes for Spark executors
• Mixing instance types & sizes to reduce risk of spot interruptions - cluster autoscaling
• Spark 3.0: Graceful Decommissioning - preserve shuffle files on executor shutdown
• Spark 3.1: PVC reuse on executor restart - disaggregate compute & shuffle storage
• What to look for in future Spark releases

