
How Robinhood Built a Streaming Lake House to Bring
Data Freshness from 24h to <15min

1

Balaji Varadarajan
Senior Staff Engineer, Robinhood Markets

Apache Hudi PMC

From 24h to 15min

Vikrant Goel
Engineering Manager, Robinhood Markets

Agenda

• Legacy Data Lake and Ingestion Framework

• Deep Dive - Change Data Capture (CDC)
• Design
• Lessons Learned

• Deep Dive - Data Lakehouse Ingestion
• Apache Hudi
• End to End Setup

2

Data Lake

3All trademarks, logos and brands are the property of their respective owners.

Daily Snapshots

All trademarks, logos and brands are the property of their respective owners.

• Daily snapshotting of tables in RDBMS
(RDS)

• High Read & Write amplifications

• Dedicated Replicas to isolate snapshot
queries

• Bottlenecked by Replica I/O

• 24+ hours data latency

Need Faster Intraday Ingestion
Pipeline

Unlock Data Lake for business critical
applications

Change Data Capture

● Each CRUD operation streamed from DB to Subscriber

● Merge changes to lake house

● Efficient & Fast -> Capture and Apply only deltas

All trademarks, logos and brands are the property of their respective owners.

Deep Dive
CDC using Debezium

7

Debezium

● Open source & distributed Kafka-Connect Service for change data
capture

● Support CDC from diverse RDBMS (Postgres, MySQL, MongoDB, etc.)

● Pluggable Sinks through Kafka

High Level Architecture

Primary
RDS

Replica
RDS

DeltaStreamer

DeltaStreamer
Bootstrap

DATA LAKE
(s3://xxx/…

Update schema
and partition

Write incremental data
and checkpoint offsets

All trademarks, logos and brands are the property of their respective owners.

 Table Topic

Debezium - Zooming In

Primary DB (RDS)
WriteAheadLogs (WALs)

1. Enable logical-replication.
All updates to the Postgres RDS
database are logged into binary files
called WriteAheadLogs (WALs)

All trademarks, logos and brands are the property of their respective owners.

2. Debezium
consumes WALs
using Postgres
Logical Replication

 Table_1 Topic

 Table_2 Topic

 Table_n Topic

4. Debezium writes
avro serialized updates
into table level Kafka
topics

AVRO Schema Registry

3. Debezium updates
and validates avro
schemas using Kafka
Schema Registry

Why did we choose Debezium over
alternatives?
Debezium AWS Database Migration Service (DMS)

Operational Overhead High Low

Cost Free, with engineering time cost Relatively expensive, with negligible engineering
time cost

Speed High Not enough

Customizations Yes No

Community Support Debezium has a very active and helpful Gitter
community.

Limited to AWS support.

All trademarks, logos and brands are the property of their respective owners.

1. Postgres Primary Dependency
ONLY the Postgres Primary publishes WriteAheadLogs (WALs).

Disk Space:
- If a consumer dies, Postgres will keep accumulating WALs to ensure Data Consistency
- Can eat up all the disk space
- Need proper monitoring and alerting

CPU:
- Each logical replication consumer uses a small amount of CPU
- Postgres10+ uses pgoutput (built-in) : Lightweight

Postgres9 uses wal2Json (3rd party) : Heavier
- Need upgrades to Postgres10+

Debezium: Lessons Learned

Postgres Primary:
- Publishes WALs
- Record LogSequenceNumber
(LSN) for each consumer

Consumer-1

Consumer-n

Consumer-2LSN-2

LSN-1

LSN-n

Consumer-ID LSN

Consumer-1 A3CF/BC

Consumer-n A3CF/41

All trademarks, logos and brands are the property of their respective owners.

Debezium: Lessons Learned

2. Initial Table Snapshot
(Bootstrapping)
Need for bootstrapping:

- Each table to replicate requires initial snapshot, on top of which ongoing
logical updates are applied

Problem with Debezium:
- Debezium processes data row at row level
- Large tables are slow
- Too much pressure on Kafka Infrastructure and Postgres primary

Solution using Hudi Deltastreamer:
- Custom bootstrapping framework using partitioned and distributed spark

reads
- Can use read-replicas instead of the master

Primary
RDS

Replica
RDS

 Table
Topic

DeltaStreamer
Bootstrap

DeltaStreamer

All trademarks, logos and brands are the property of their respective owners.

Debezium: Lessons Learned

AVRO JSON JSON + Schema

Throughput
(Benchmarked using db.r5.24xlarge
Postgres RDS instance)

Up to 40K mps Up to 11K mps.
JSON records are larger than AVRO.

Up to 3K mps.
Schema adds considerable size to
JSON records.

Data Types - Supports considerably high
number of primitive and complex
data types out of the box.
- Great for type safety.

Values must be one of these 6 data
types:
- String
- Number
- JSON object
- Array
- Boolean
- Null

Same as JSON

Schema Registry Required by clients to deserialize
the data.

Optional Optional

3. AVRO vs JSON

All trademarks, logos and brands are the property of their respective owners.

4. Multiple logical replication streams for
horizontal scaling

- Multiple large tables can overwhelm a single Debezium connector

- Split the tables across multiple Debezium connectors
Total throughput = throughput_per_connector * num_connectors

- Each connector does have small CPU cost

Debezium: Lessons Learned

Table-1

Table-4

Table-2

Table-5

Table-3

Table-n

Consumer-1

Consumer-n

Consumer-2

Table-1
Table-2
Table-3

Table-4
Table-5

Table-n

All trademarks, logos and brands are the property of their respective owners.

Debezium: Lessons Learned

5. Schema evolution and value of
Freezing Schemas
Failed assumption: Schema changes are infrequent and always backwards
compatible.

- Examples:
1. Adding non-nullable columns (Most Common 99/100)
2. Deleting columns
3. Changing data types
4. Can happen anytime during the day #always_on_call

How to handle the non backwards compatible changes?
- Re-bootstrap the table

Alternatives? Freeze the schema
- Debezium allows to specify the list of columns per table.
- Pros:

- #not_always_on_call
- Batch the changes for management window

- Cons:
- Schema is temporarily out of sync

Table-X

Backwards
Incompatible Schema
Change

Consumer-2
- Specific columns

Consumer-1
- All columns

All trademarks, logos and brands are the property of their respective owners.

Deep Dive
Lakehouse

17

Lakehouse - Requirements

● Transaction support

● Scalable Storage and compute

● Openness

● Direct access to files

● End-to-end streaming

● Diverse use cases
All trademarks, logos and brands are the property of their respective owners.

Hudi Table APIs

Apache Hudi - Introduction

● Transactional Lakehouse pioneered by Hudi

● Serverless, transactional layer over lakes.

● Multi-engine, Decoupled storage from

engine/compute

● Upserts, Change capture on lakes

● Introduced Copy-On-Write and Merge-on-Read

● Ideas now heavily borrowed outside

Cloud Storage

Files Metadata Txn log

Writers Queries

https://eng.uber.com/hoodie/ Mar 2017

All trademarks, logos and brands are the property of their respective owners.

https://eng.uber.com/hoodie/

Apache Hudi - Upserts & Incrementals

Hudi
Tableupsert(records)

at time t

Changes
to table

Changes
from table

incremental_query(t-1, t)

table_snapshot() at time t

Latest committed records

Streaming
Ingest Compaction Z-ordering/

Clustering
Indexing

All trademarks, logos and brands are the property of their respective owners.

 Write Ahead
Log of RDBMS

21

Apache Hudi - Storage Layout

Apache Hudi - Copy-On-Write Table

Snapshot Query

Incremental Query

Insert: A, B, C, D, E Update: A => A’, D => D’ Update: A’ => A”, E => E’, Insert: F

commit time=0 commit time=1 commit time=2

A, B

C, D

E

file1_t0.parquet

file2_t0.parquet

file3_t0.parquet

A’, B

C, D’

file1_t1.parquet

file2_t2.parquet

A”, B

E’,F

file1_t2.parquet

file3_t2.parquet

A,B,C,D,E

A,B,C,D,E

A’,B,C,D’,E A”,B,C,D’,E’,F

A’,D’ A”,E’,F

All trademarks, logos and brands are the property of their respective owners.

Apache Hudi - Merge-On-Read Table
Insert: A, B, C, D, E Update: A’=>A”,

E=>E’,Insert: F

commit time=0

Update: A => A’,
D => D’

commit time=1 commit time=2

A, B

C, D

E

file1_t0.parquet

file2_t0.parquet

file3_t0.parquet

A’

D’

.file1_t1.log

.file2_t2.log

A”

E’,F

.file1_t2.log

.file3_t2.log

A,B,C,D,E

A,B,C,D,E

A’,B,C,D’,E A”,B,C,D’,E’,F

A’,D’ A”,E’,F

Snapshot Query

Incremental Query

Read Optimized Query A,B,C,D,E

Compaction

commit time=3

A”, B

C, D’

E’,F

file1_t3.parquet

file2_t3.parquet

file3_t3.parquet

A”,B,C,D’,E’,F

A”,E’,F

A”,B,C,D’,E’,FA,B,C,D,E A,B,C,D,E

All trademarks, logos and brands are the property of their respective owners.

The Community

2000+
Slack Members

225+
Contributors

1000+
GH Engagers

20+
Committers

Pre-installed on 5 cloud providers

Diverse PMC/Committers

1M DLs/month
(400% YoY)

800B+
Records/Day

(from even just 1 customer!)

Rich community of participants

All trademarks, logos and brands are the property of their respective owners.

Apache Hudi - Community
2K+

All trademarks, logos and brands are the property of their respective owners.

26

Apache Hudi - Relevant Features

DFS/Cloud Storage

Raw Tables

Data Lake

Derived Tables

Hudi upsert()
15 mins

Hudi Incremental query()
scan 10-100x less data

Updated/
Created rows

from databases

● Database abstraction for cloud storage/hdfs

● Near real-time ingestion

● Incremental, Efficient ETL downstream

● ACID Guarantees

All trademarks, logos and brands are the property of their respective owners.

27

Apache Hudi + Databricks = Best of Both Worlds!

● Hudi supports pluggable metadata syncing - BigQuery, Hive, Glue,

DataHub, …

● WIP - A bridge between Hudi and Delta Lake.

○ Query Hudi table snapshot as a Delta Lake table HudiDelta Lake

Cache/Photon

User on Databricks Runtime

All trademarks, logos and brands are the property of their respective owners.

● We believe

○ Hudi offers the most complete lakehouse storage platform.

○ Databricks offers great Spark experience, but cache/photon

don’t work natively on Hudi.

Deep Dive
Ingestion

28

Recap - High Level Architecture

Master
RDS

Replica
RDS

 Table Topic
DeltaStreamer

DeltaStreamer
Bootstrap

DATA LAKE
(s3://xxx/…

Update schema
and partition

Write incremental data
and checkpoint offsets

All trademarks, logos and brands are the property of their respective owners.

Data Lake Ingestion - CDC Path

Schema Registry

Hudi Table

Hudi Metadata

1. Get Kafka checkpoint

2. Spark Kafka batch read
and union from most
recently committed kafka
offsets

3. Deserialize using Avro
schema from schema
registry

4. Apply Copy-On-Write
updates and update Kafka
checkpoint

 Shard 1 Table 1

 Shard 2 Table 1

Shard N Table 1

 Shard 1 Table 2

 Shard 2 Table 2

Shard N Table 2

All trademarks, logos and brands are the property of their respective owners.

Data Lake Ingestion - Bootstrap Path

Hudi Table

AWS RDS
Replica

 Shard 1 Table
Topic

 Shard 2 Table
Topic

 Shard n Table
Topic

Hudi Table
3. Wait for Replica to

catch up latest
checkpoint

2. Store offsets in Hudi
metadata

1. Get latest topic offsets

4. Spark JDBC Read 5. Bulk Insert Hudi Table

All trademarks, logos and brands are the property of their respective owners.

32

Running Ingestion at Scale

● 4000+ tables

● Automation, Self Healing

● Tiered SLAs - Provisioning and Isolation

● Pre-Commits and Validation for Quality Checks

● Monitoring & Alerting

All trademarks, logos and brands are the property of their respective owners.

Improved Freshness

34

Balaji Varadarajan Vikrant Goel

Senior Staff Engineer, Robinhood Markets Engineering Manager, Robinhood Markets

Apache Hudi PMC

Thank you!
We’ll hangout at back of room for any QA.

