
Jun Liu
Senior Data Scientist, Lyft

Fugue Tune:

Distributed Hybrid
Hyperparameter Tuning

Fugue-Tune:
Distributed Hybrid Hyperparameter Tuning

Tune is an abstraction layer for general parameter tuning. It has integrated existing
hyperparameter tuning frameworks such as Optuna and Hyperopt, ML lifecycle
management frameworks such as MLflow, and provided a simple, flexible and scalable
interface on top of them.

Tune is built on Fugue, a unifier layer for distributed computing. So Tune can seamlessly
run on any backend supported by Fugue, such as Spark, Dask and local.

(coming)

Agenda
Fugue Tune: Distributed Hybrid Hyperparameter Tuning

Introduction

• Hyperparameter Optimization in ML

Fugue Tune

• The concept of Hybrid Search Space
• Distributed Hybrid Hyperparameter Tuning
• Integration with existing HPO and ML lifecycle management frameworks

Demo on databricks

• Construct Hybrid Search Spaces with simple operations
• Distribute Tuning with Spark and track results with MLflow
• General ML objective tuning using GreyKite

Hyperparameter
Optimization In
Machine Learning

Hyperparameter Tuning In Machine Learning
A critical step in the ML modeling workflow

Data
exploration
&
analysis

★

Feature
engineering
&
selection

Model training
&
selection

Model
deployment
&
monitoring

• Objective selection
• Method selection
• Hyperparameter tuning

• Helps model generalize to the
problem and dataset

• ...

Hyperparameter Tuning In Machine Learning

Image source: educative.io

e.g. tree depth: too low just right 👍 too high

Sub-optimal hyperparameters → sub-optimal model performance

The Essence of Hyperparameter Optimization

From a given search space (input
range of hyperparameters), find a set

● learning_rate = ?
● n_estimators = ?
● max_depth = ?
● …

some objective function that

● Takes the input hyperparameter set
● Run the ML model
● Returns the cross validation score

that optimizes

Example:
California Housing Prices

Han is working on the California housing price prediction problem on Kaggle.

He looked over the discussion board and noticed that many people are using XGBoost and LightGBM.

Han decided to try both and take the best result.

Because XGBoost takes longer training time than LightGBM, Han decided to use grid search to tune XGBoost and
Bayesian optimization to tune LightGBM.

If you were Han, how would you design this search space and tuning flow?

Define Objective Function:
Takes input modeling algorithm, train, evaluate and return
a model score

Define Search Space:
Intuitively

Space 1:
● Model = XGBoost
● Try n_estimators in grid (100, 200, 300)

Space 2:
● Model = LightGBM
● Do BO on n_estimators in range (100, 400)

Call an optimizer to find the best parameters from
the union of Space 1 and Space 2

Define Search
Space:
Reality

• Grid search, random search
and BO are exclusive to each
other. Users need to define
separate objective functions
to use more than one
method.

• To do Grid search,
parameters need to be
declared both inside and
outside the objective and in
different ways.

Optuna

Existing
Frameworks
vs.
Fugue-Tune

Define Search
Space:

• Model search, grid search,
random search and BO can be
combined intuitively

• Zero redundancy on defining
parameters

• One expression for all
underlying frameworks (e.g.
Optuna, HyperOpt)

Fugue Tune

The concept of
Hybrid Search
Space

Grid Search
Exhaustively searches through a set of specified choices

space = Space(

a = 1

b = Grid(2, 3)

c = Grid("x", "y")

)

Generated search space:

{"a": 1, "b": 2, "c": "x"}

{"a": 1, "b": 2, "c": "y"}

{"a": 1, "b": 3, "c": "x"}

{"a": 1, "b": 3, "c": "y"}

Pros: deterministic, interpretable, even coverage, good for categorical parameters
Cons: inefficient, complexity can increase exponentially

Random Search
Generates and evaluates a specified number of random inputs

space = Space(

a = 1

b = Rand(2, 3)

c = Choice("x", "y")

).sample(4)

Generated search space:

{"a": 1, "b": 2.25, "c": "x"}

{"a": 1, "b": 2.11, "c": "y"}

{"a": 1, "b": 2.67, "c": "x"}

{"a": 1, "b": 2.84, "c": "x"}

Pros: complexity and distribution are controlled, good for continuous variables
Cons: not deterministic, normally requires large number of samples, number of iterations limited by
time/resources

Bayesian Optimization
Iteratively searches based on previous observations

space = Space(

a = 1

b = Rand(2, 3)

)

Generated search space:

{"a": 1, "b": BO in (2,3)}

Pros: automated guided search, better result in fewer evaluations
Cons: sequential operations can not be distributed and may take more time

Hybrid Search Space
Customizing search space and use mixed type of methods

rand_space = Space(

a = Rand(1, 2)

).sample(2)

grid_space = Space(

b = Grid("x", "y")

)

bo_space = Space(

c = Rand(2, 3)

)

space = (rand_space + grid_space) * bo_space

Generated search space:

{"a": 1.2, "c": bo in (2,3)}

{"a": 1.7, "c": bo in (2,3)}

{"b": "x", "c": bo in (2,3)}

{"b": "y", "c": bo in (2,3)}

Bayesian optimization as a second tuning
layer on top of Random and Grid Search.

Demo: Hybrid Parameter Search Space

• https://www.youtube.com/watch?v=Po2AFbKde5E&t=2s

http://www.youtube.com/watch?v=Po2AFbKde5E
https://www.youtube.com/watch?v=Po2AFbKde5E&t=2s

Example 1: Union Space
"+" means take the union of the spaces

use case: different tuning method on different modeling algorithms

xgb_grid = Space(model=XGBRegressor, n_estimatores=Grid(50,150))

lgbm_random = Space(model=LGBMRegressor, n_estimatores=RandInt(100,200)).sample(3)

catboost_bo = Space(model=CatBoostRegressor, n_estimatores=RandInt(100,200))

union_space = xgb_grid + lgbm_random + catboost_bo

1

2

3

4

5

6

7

8

9

10

Example 2: Cross Product Space
"*" means take the cross product of the spaces

use case: different tuning method inside one modeling algorithm

non_bo_space = Space(

 model=LGBMRegressor,

 boosting=Grid("dart", "gbdt"), # Grid search

 feature_fraction=Rand(0.5, 1) # Random search

).sample(2, seed=0)

bo_space = Space(learning_rate=Rand(1e-8, 10, log=True)) # Bayesian Optimization

product_space = non_bo_space * bo_space

1

2

3

4

5

6

7

8

9

10

Distributed HPO
on Hybrid Search
Space

Distributed HPO
on Hybrid Search Space

Space 1 Space 2

Grid Random Bayesian

Fugue-Tune
Distribute the tuning jobs to Spark/Dask with one parameter

● Set execution engine to your spark session
● Fugue will take care the backend and parallelize

everything that could be parallelized

Integration with
existing HPO and
ML lifecycle
management
frameworks

Fugue-Tune:
Monitor tuning jobs on MLflow with one parameter change

Use MLflow as logging backend with one parameter change

Fugue-Tune:
Track tuning results with MLflow experiments

● Highly organized logging with nested structure
○ One suggest method will generate one parent run
○ All the sub trials are logged as sub runs
○ Parent run takes the best result from all the sub runs

Fugue-Tune:
Switch between HPO libraries seamlessly

Switch to HyperOpt for BO in one parameter change

Demo: Distribute Tuning with Spark and
result monitoring with MLflow

• https://www.youtube.com/watch?v=LOkROeqJG1M

http://www.youtube.com/watch?v=LOkROeqJG1M
https://www.youtube.com/watch?v=LOkROeqJG1M

Demo: Distribute Tuning with Spark and
result monitoring with MLflow

Run tuning distributedly on Spark, track the result with mlflow and apply Optuna
for Bayesian Optimization.

result = suggest_for_noniterative_objective(

 objective,

 xgb_space + lgbm_space,

 local_optimizer=HyperoptLocalOptimizer(max_iter=50),

 execution_engine="spark",

 logger="mlflow",

)

1

2

3

4

5

6

7

8

9

10

Final Demo:
General ML
objective tuning
using GreyKite

General ML objective tuning using GreyKite
Forecasting Peyton Manning Wiki Daily Log Page View

Dataset Info:

● Time column “ts” ranges from
2007-12-10 to 2016-01-20

● Value column “y” ranges from 5.26
to 12.84

● Time series cross validation
● Last year to test
● Metric: MAPE

General ML objective tuning using GreyKite
Forecasting Peyton Manning Wiki Daily Log Page View

Common Parameters to tune:

● Datetime derivatives
● Growth
● Trend
● Seasonality
● Events
● Autoregression method
● Interactions
● …

Demo: General ML Objective Tuning using
GreyKite

• https://www.youtube.com/watch?v=kXB8uXIQ850

http://www.youtube.com/watch?v=kXB8uXIQ850
https://www.youtube.com/watch?v=kXB8uXIQ850

Summary
Fugue Tune: Distributed Hybrid Hyperparameter Tuning

What we have covered today:

• Definition and construction of hybrid search space
• Distributed model evaluation and result monitoring
• Distributed hybrid hyperparameter tuning on complex ML objective functions

Fugue Tune provides an simple, flexible, and scalable interface for distributed hybrid
parameter tuning. It helps achieve key functionalities in machine learning with minimized
amount of code.

(coming)

Presentation Materials
Fugue Tune: Distributed Hybrid Hyperparameter Tuning

pip install tune (https://github.com/fugue-project/tune)

pip install fugue (https://github.com/fugue-project/fugue)

Space Operation Demo

• Notebook: https://www.kaggle.com/liujun4/tune-demo-1-space-operation
• Recording: https://www.youtube.com/watch?v=Po2AFbKde5E&t=2s

CA Housing Demo

• Notebook: https://www.kaggle.com/code/liujun4/tune-vs-optuna
• Recording: https://www.youtube.com/watch?v=LOkROeqJG1M

Greykite Demo

• Notebook: https://www.kaggle.com/liujun4/tune-demo-2-general-ml-objective-tuning-greykite
• Recording: https://www.youtube.com/watch?v=kXB8uXIQ850

https://github.com/fugue-project/tune
https://github.com/fugue-project/fugue
https://www.kaggle.com/liujun4/tune-demo-1-space-operation
https://www.youtube.com/watch?v=Po2AFbKde5E&t=2s
https://www.kaggle.com/code/liujun4/tune-vs-optuna
https://www.youtube.com/watch?v=LOkROeqJG1M
https://www.kaggle.com/liujun4/tune-demo-2-general-ml-objective-tuning-greykite
https://www.youtube.com/watch?v=kXB8uXIQ850

Jun Liu
Senior Data Scientist

Thank you

