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Data, analytics, and AI enabled tech’s 
leaders to disrupt industries



Tech leaders are to the right of the Data Maturity Curve

Data + AI Maturity
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What will happen?

How should we respond?

What happened?

Automatically make the best decision

From hindsight to foresight
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Use AI to approve 
and underwrite a 

new Apple Card in 
less than 5 minutes 

on iPhone 

Uses ML and voice 
recognition to create 

a highly innovative, 
and an Emmy 

winning viewer 
experience.

COMCAST

Speed up the 
development of a 

groundbreaking cancer 
treatment 

Every company wants to leverage data and AI



 LOGOS PENDING APPROVAL BELOW

Lakehouse adoption across industries



Simple
Unify your data warehousing and AI 
use cases on a single platform 

Multicloud
One consistent data platform across clouds

Open
Built on open source and open standards

Lakehouse Platform
Lakehouse Platform

Data
Warehousing

Data 
Engineering

Data Science
and ML

Data 
Streaming

All structured and unstructured data
Cloud Data Lake

Apache Spark
Engine for massive data processing at scale

Delta Lake
Data reliability and performance



Most enterprises still struggle with 
data, analytics, and AI



Fivetran Data Analyst Survey

90% regularly had 
unreliable data sources86% of analysts using 

stale data.

60% reported data 
quality as top challenge



Getting high-quality, timely data is hard
But it’s also a problem with system architectures!



ETL

External Data Operational Data

Data Warehouses

BI Reports

Data Warehouses

High quality, reliable data

Great for Business Intelligence

• Closed, proprietary format

• Only structured data

• No support for data science, 
ML, streaming
Expensive to scale out



Data Lakes 
Open format

Scalability and Flexibility

All data types and use cases

• Low data quality

• Complex to manage and govern

• Unreliable data swamps

BIData 
Science

Machine 
Learning

Structured, Semi-Structured and Unstructured 
Data

Data Lake

Real-Time 
Database

Reports

Data 
Warehouses

Data Prep and 
Validation

ETL



Realizing this requires two disparate, incompatible data platforms

Data + AI Maturity

C
om

p
et

it
iv

e 
A

d
va

nt
ag

e

Reports
Clean Data

Ad Hoc 
Queries

Data 
Exploration

Predictive
Modeling

Prescriptive
Analytics

Automated
Decision Making

Data Lake
for AI

Data Warehouse
for BI

Data Maturity Curve

What will happen?

What happened?



Lakehouses – Best of Data warehouses + Data Lakes

Data Warehouse Data Lake

Streaming 
Analytics

BI Data 
Science

Machine 
Learning

Structured, Semi-Structured and Unstructured 
Data



OPEN SOURCE
is the Foundation

LAKEHOUSE
One platform to unify all of  
your data, and AI workloads

FLEXIBILITY & 
SCALABILITY
of Data Lake

RELIABILITY & 
PERFORMANCE

of Data Warehouse



Evolution of Data Architectures

1980s: Datawarehouses

Data Warehouses

●  High quality, reliable data
●  Great for Business Intelligence

2010s: Data Lakes

Data Lakes

● Open format
● Scalability and Flexibility
● All data types and use 

cases

Today’s challenges

Problems with today’s 
architectures

● Low data quality
● Complex to manage and 

govern
● Unreliable data swamps

Today: Data Lakehouses

Lakehouses
● Directly-accessible data in 

open formats
● Reliability and Performance 
● Flexibility and Scalability
● AI and BI workloads

2010s: DW challenges

Problems for Data Warehouses

● Closed, proprietary format
● Only structured data
● No support for data science, ML, 

streaming
● Expensive to scale out



Streaming 
Analytics

BI Data 
Science

Machine 
Learning

Structured, Semi-Structured and Unstructured 
Data

Scalable, low-cost directly 
accessible Cloud Data Lakes

Lakehouse Architecture

One platform for all Data use cases



Streaming 
Analytics

BI Data 
Science

Machine 
Learning

Structured, Semi-Structured and Unstructured 
Data

Scalable, low-cost directly 
accessible Cloud Data Lakes

Lakehouse Architecture

Open, Transactional Layer for 
Curated Data

One platform for all Data Use 
Cases



High perf query engine(s)

One platform for all Data Use 
CasesStreaming 

Analytics
BI Data 

Science
Machine 
Learning

Scalable, low-cost directly 
accessible Cloud Data Lakes

Structured, Semi-Structured and Unstructured 
Data

Open, Transactional Layer for 
Curated Data

Lakehouse Architecture



Streaming 
Analytics

BI Data 
Science

Machine 
Learning

Structured, Semi-Structured and Unstructured 
Data

Delta Lake: The Foundation of Lakehouses

One Data Foundation for BI, Data 
Science & ML 

■ Adds reliability, performance, 
governance, and quality to existing 
data lakes

■ Based on open data format (Parquet)
■ Simplifies data engineering with a 

curated data lake approach



How to build a Lakehouse?



Data Lake

AI & Reporting

Streaming
Analytics

Business-level 
Aggregates

Filtered, Cleaned
Augmented

Raw 
Ingestion

Bronze Silver Gold

CSV,
JSON, 
TXT…

Kinesis

Quality

Delta Lake allows you to incrementally improve the 
quality of your data until it is ready for consumption.

*Data Quality Levels *
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Data Lake

AI & Reporting

Streaming
Analytics

Business-level 
Aggregates

Filtered, Cleaned
Augmented

Raw 
Ingestion

Bronze Silver Gold

CSV,
JSON, 
TXT…

Kinesis 🔥

•Dumping ground for raw data
•Often with long retention (years)

BRONZE TABLE



Data Lake

AI & Reporting

Streaming
Analytics

Business-level 
Aggregates

Filtered, Cleaned
Augmented

Raw 
Ingestion

Bronze Silver Gold

CSV,
JSON, 
TXT…

Kinesis

● Intermediate data with some cleanup applied.
● Queryable for easy debugging!

🔥

SILVER TABLE



Data Lake

AI & Reporting

Streaming
Analytics

Business-level 
Aggregates

Filtered, Cleaned
Augmented

Raw 
Ingestion

Bronze Silver Gold

CSV,
JSON, 
TXT…

Kinesis

Clean data, ready for consumption.

🔥

GOLD TABLE



Internals of 



Scalable storage

Scalable transaction log

pathToTable/
+---- 000.parquet

  +---- 001.parquet   +---- 
002.parquet

  + ...

● table data stored as Parquet files 
on cloud storage

● sequence of metadata files to track 
operations made on files in the table

● stored in cloud storage along with table
● read and process metadata in parallel

  |
  +---- _delta_log/

+---- 000.json
+---- 001.json
...



Contents of Delta Directory



Delta Transaction logs 



Data VersioningACID 
Transactions

Scalable 
Metadata

Schema Evolution / 
Enforcement

Open Source
DML

Operations

Unified 
Batch/Streaming

Delta Lake Features

Curated Data 

Raw Data

Semi-Structured Unstructured Data
Structured



Data reliability challenge # 1

Failed production jobs leave data in 
corrupt state requiring tedious recovery

✗



Example: Data Corruption ✗

Run result unavailable: job failed with error message Unexpected failure 
while waiting for the cluster (0422-091004-4zud3ebj) to be ready.Cause 
Unexpected state for cluster (hhjj-02348-4zud3ebj): 
BOOTSTRAP_TIMEOUT(SUCCESS):[id: 
InstanceId(i-0f8a1c082d3aa434b), status: INSTANCE_INITIALIZING, 
workerEnvId:WorkerEnvId(workerenv-28425385-ldsajlf-34832-sdf33-fdg-
ffvfbf), lastStatusChangeTime: 3794703740372, with threshold 700 
seconds timed out after 704477 milliseconds. Please check network 
connectivity from the data plane to the control 
plane.,instance_id:i-7320kj2b3484



Data reliability challenge # 2

Lack of consistency makes it almost 
impossible to mix appends and reads, 
batch and streaming



Resolution of Consistency issues in Legacy Data 
Pipelines

• New rows to be inserted

• Rows that will be replaced

• Rows that are not impacted 

• Create a new temp 

• Delete the original table 

• "Rename" the temp table 

• Drop the temp table



How Delta Lake solves consistency and data 
corruption problems?



Changes to the table 
are stored as ordered, 
atomic commits 

Each commit is JSON 
file in  _delta_log with 
a set of actions

Transaction  Log Commits

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

UPDATE actions

INSERT actions

  |
  +---- _delta_log/

+---- 000.json
+---- 001.json
...



Consistent Snapshots

UPDATE actions

INSERT actions

Readers read the log in 
atomic units thus 
reading consistent 
snapshots

readers will read 
either [001+002].parquet 
or 003.parquet
and nothing in-between

  |
  +---- _delta_log/

+---- 000.json
+---- 001.json
...

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet



ACID via Mutual Exclusion on Log Commits

Concurrent writers need to agree on 
the order of changes (optimistic 
concurrency control)

New commit files must be created 
mutually exclusively using 
storage-specific API guarantees

000.json

001.json

002.json

Writer 1 Writer 2

only one of the writers trying to 
concurrently write 002.json 

must succeed



Data reliability challenge # 3

Lack of schema enforcement 
creates inconsistent and low 
quality data 



stream_query = generate_and_append_data_stream(
    table_format = "parquet", 
    table_path = parquet_path)

Where did the two new columns `timestamp` and `value` come 
from? And where did my existing rows go?

Example: Lack of schema Enforcement in 
Parquet

Total records = 14705 Total records = 51TOTAL RECORDS = 51



How does Delta Lake enforce schema?



Example of schema handling in

Intentional 
failure



Schema Evolution with 
• Schema evolution allows users to easily change a tableʼs current schema to 

accommodate data that is changing over time. 
• Most commonly used operations for 

• append 
• overwrite 

• Use .option('mergeSchema', 'true') to your .write or .writeStream 
Spark command.



Performance features 



Data Skipping 

• Column min/max values 
automatically collected when 
writing files and committing to log

skipped as data range 
outside selected value

file1.parquet

file2.parquet

file3.parquet

year: min 2018, max 2019
uid: min 12000, max 23000

year: min 2018, max 2020
uid: min 12000, max 14000

year: min 2020, max 2020
uid: min 23000, max 25000

SELECT * FROM events
WHERE year=2020 AND uid=24000

• Read queries can skip files 
using min/max values



Generated Columns

• Automatically generate data for new columns 
using any expression on other columns

• Compliant with SQL standards
• Can be used for partitioning or bucketing
• Automatic filter generation and data skipping 

CREATE TABLE events(

    id bigint,

    idBucket bigint GENERATED ALWAYS AS (

      id % 100

    ),

    eventTime timestamp,

    eventDate date GENERATED ALWAYS AS (

      CAST(eventTime AS DATE) 

    )

)

USING delta

PARTITIONED BY (eventDate, idBucket)

id idBucket eventTime eventDate

1234 34 2021-05-24 
09:00:00.000

2021-05-24

… WHERE eventTime < '2021-05-24 

09:00:00.000'

… WHERE eventTime < '2021-05-24 09:00:00.000’ 

  AND eventDate < '2021-05-24' 

generate 
extra filter
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3,0

3,1

0,2 1,2 3,2 4,2 5,2 6,2 7,2

3,4

3,5

3,6

3,7

Z-Order

SELECT * FROM points 
WHERE x = 2 OR y = 3

9 files scanned in total  👎
21 false positives  👎

7 files scanned in total  👍
13 false positives  👍

x=2x=2 

y=3

Optimize data layout 
with Z-order

Multi-column data  clustering 
that is  better than simple 
multi-column sorting

With column stats, this 
enables better data skipping 
leading to faster queries

OPTIMIZE deltaTable 
ZORDER BY (x, y)

Z-Ordering



Data Versioning with 

▪ Audit

▪ Reproduce Experiments

▪ Rollbacks

SELECT * FROM my_table
TIMESTAMP AS OF “2020-05-01”



Pace of 
innovation



Delta Lake Pace of Innovation Highlights

Sep 2019 (0.4)Apr 2019 (0.1) Apr 2020 (0.6)Dec 2019 (0.5) Feb 2021 (0.8)Jun 2020 (0.7)

● Open Source Delta Lake
● ACID Transactions
● Schema Management
● Scalable Metadata Handling
● Time Travel
● Unified Batch and Streaming

● Scala/Java APIs for DML commands
● Scala/Java APIs for query commit history
● Scala/Java APIs for vacuuming old files
● Python DML APIs
● Convert-to-Delta
● Python and SQL utility operations

● Support for other processing engines (via 
manifest)

● Improved concurrency
● Improved file compaction
● Improved insert-only merge performance
● Convert-to-Delta using SQL
● Experimental Snowflake and Redshift 

Spectrum support

● Support for schema evolution in merge 
operations

● Improved merge performance with 
automatic repartitioning 

● Improved merge performance with no insert 
clause 

● Operation metrics in DESCRIBE HISTORY 
● Support for reading Delta tables from any 

file system 

● Support for defining tables in the Hive 
metastore

● Support for SQL DML
● Support for automatic and incremental 

Presto/Athena manifest generation
● Support for controlling the retention of the 

table history
● Support for adding user-defined metadata in 

Delta table commits
● Support Azure Data Lake Storage Gen2
● Improved support for streaming one-time 

triggers 

● Unlimited MATCHED and NOT MATCHED clauses 
for merge operations (Scala, Java, Python)

● MERGE operation now supports schema 
evolution of nested columns 

● MERGE INTO and UPDATE operations now resolve 
nested struct columns by name

● Check constraints on Delta tables 
● Start streaming a table from a specific version
● Ability to perform parallel deletes with VACUUM
● Use Scala implicits to simplify read and write 

APIs 

May 2021(1.0) Dec 2021 (1.1)

● Generated Columns
● Multi-cluster writes
● Cloud Independence
● Spark 3.1 Support
● PyPI Install
● Delta Everywhere

● Delta Standalone Writer
● Delta Sink for Apache Flink
● Delta Source for PrestoDB
● Delta Source for Apache Pulsar
● Performance improvements in 

MERGE operation
● Support for Generated Columns in 

MERGE operation

April 2022(1.2)

● Compacting small files (optimize) 
into larger files

● Data skipping using column 
statistics. 

● S3 multi-cluster writes
● Table restore to an earlier 

version. 
● Column renaming without 

rewriting files. 
● Arbitrary characters support in 

column names
● Automatic data skipping using 

generated columns. 
● Google Cloud storage support - 

GA



Delta Lake 2.0 
Unlock the power of Delta Lake

ACID 
Transactions

Scalable 
Metadata

Time Travel

Unified 
Batch/Streaming

Schema 
Enforcement

Audit History DML Operations

Compaction MERGE 
Enhancements

Stream 
Enhancements

Simplified 
Logstore

OPTIMIZE OPTIMIZE 
ZORDER

Change
data feed

Table Restore S3 Multi-cluster 
writes

Data
Skipping via 

Column Stats

Multi-part
checkpoint writes

Generated 
Columns

Column 
Mapping

Generated 
column support 
w/ partitioning

Identity
Columns

Subqueries in 
deletes and 

updates

Clones

Iceberg to Delta 
converter

Deletion 
Vectors

Coming Soon!

Schema 
Evolution

52



SQL engines

Cloud platforms API  Languages

Python

Rust

ruby

Scala

Azure 
Synapse

Google 
DataProc

Databricks

AWS 
Athena

AWS Redshift 
SpectrumPower BI

ETL and streaming 
engines

kafka-del
ta-ingest

Delta Lake Ecosystem 



Delta Lake performance
TPC-DS Benchmark Comparison (Higher is better)

Delta Lake is

1.9x faster than 
Storage Format 1

4.3x faster than 
Storage Format 2

Higher is better

5
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Performance Optimizations roadmap
https://github.com/delta-io/delta/issues/920



Community
Adoption and Social Channels



Adoption of Delta Lake



1+
Exabytes 

Processed / 
day

50+
Companies

Contributing 

6000+
Slack 

Members

Delta Lake: Project MaturityThe Foundation of Lakehouse



The most widely used lakehouse format in the world 



delta.io

delta-users 
Slack

delta-users 
Google Group

Delta Lake
YouTube channel

Delta Lake
GitHub Issues

Delta Lake 
Linkedin

data-ai-online

/vinijaiswal        @vini_jaiswal

Engage with Delta Lake community



Contributing to the Project
https://github.com/delta-io/delta/blob/master/CONTRIBUTING.md

GOOD FIRST 
ISSUES

Participate in 
a discussion

Create a Pull 
Request

/vinijaiswal        @vini_jaiswal

https://github.com/delta-io/delta/blob/master/CONTRIBUTING.md


Have questions, join our community AMAs 
every two weeks

/vinijaiswal        @vini_jaiswal
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17+ 
Technical Sessions

Delta Lake - Use Cases 
and Deep Dives

Ask Me Anything
Delta Lake Panels

Panel 1: June 28
10:30 AM PST

Panel 2: June 29
11:40 AM PST

Keynote
Delta Lake 2.0

June 28
10:30 AM PST

Come join the Delta Community at 
the Data and AI Summit 

● We have exciting line up of 
technical sessions and events. 

● You might also get a chance to 
meet some of the creators!!!

Mascone Center, San Francisco 
OR

Virtually for Free!

/vinijaiswal        @vini_jaiswal



Thank you!

/vinijaiswal        @vini_jaiswal


