
And building a Lakehouse

Vini Jaiswal
Developer Advocate, Databricks

Evolution of
Data
Architectures

/vinijaiswal @vini_jaiswal

Data, analytics, and AI enabled tech’s
leaders to disrupt industries

Tech leaders are to the right of the Data Maturity Curve

Data + AI Maturity

C
om

p
et

it
iv

e
A

d
va

nt
ag

e

Clean
Data

Reports

Ad Hoc
Queries

Data
Exploration

Predictive
Modeling

Prescriptive
Analytics

Automated
Decision
Making

What will happen?

How should we respond?

What happened?

Automatically make the best decision

From hindsight to foresight

3

Use AI to approve
and underwrite a

new Apple Card in
less than 5 minutes

on iPhone

Uses ML and voice
recognition to create

a highly innovative,
and an Emmy

winning viewer
experience.

COMCAST

Speed up the
development of a

groundbreaking cancer
treatment

Every company wants to leverage data and AI

 LOGOS PENDING APPROVAL BELOW

Lakehouse adoption across industries

Simple
Unify your data warehousing and AI
use cases on a single platform

Multicloud
One consistent data platform across clouds

Open
Built on open source and open standards

Lakehouse Platform
Lakehouse Platform

Data
Warehousing

Data
Engineering

Data Science
and ML

Data
Streaming

All structured and unstructured data
Cloud Data Lake

Apache Spark
Engine for massive data processing at scale

Delta Lake
Data reliability and performance

Most enterprises still struggle with
data, analytics, and AI

Fivetran Data Analyst Survey

90% regularly had
unreliable data sources86% of analysts using

stale data.

60% reported data
quality as top challenge

Getting high-quality, timely data is hard
But it’s also a problem with system architectures!

ETL

External Data Operational Data

Data Warehouses

BI Reports

Data Warehouses

High quality, reliable data

Great for Business Intelligence

• Closed, proprietary format

• Only structured data

• No support for data science,
ML, streaming
Expensive to scale out

Data Lakes
Open format

Scalability and Flexibility

All data types and use cases

• Low data quality

• Complex to manage and govern

• Unreliable data swamps

BIData
Science

Machine
Learning

Structured, Semi-Structured and Unstructured
Data

Data Lake

Real-Time
Database

Reports

Data
Warehouses

Data Prep and
Validation

ETL

Realizing this requires two disparate, incompatible data platforms

Data + AI Maturity

C
om

p
et

it
iv

e
A

d
va

nt
ag

e

Reports
Clean Data

Ad Hoc
Queries

Data
Exploration

Predictive
Modeling

Prescriptive
Analytics

Automated
Decision Making

Data Lake
for AI

Data Warehouse
for BI

Data Maturity Curve

What will happen?

What happened?

Lakehouses – Best of Data warehouses + Data Lakes

Data Warehouse Data Lake

Streaming
Analytics

BI Data
Science

Machine
Learning

Structured, Semi-Structured and Unstructured
Data

OPEN SOURCE
is the Foundation

LAKEHOUSE
One platform to unify all of
your data, and AI workloads

FLEXIBILITY &
SCALABILITY
of Data Lake

RELIABILITY &
PERFORMANCE

of Data Warehouse

Evolution of Data Architectures

1980s: Datawarehouses

Data Warehouses

● High quality, reliable data
● Great for Business Intelligence

2010s: Data Lakes

Data Lakes

● Open format
● Scalability and Flexibility
● All data types and use

cases

Today’s challenges

Problems with today’s
architectures

● Low data quality
● Complex to manage and

govern
● Unreliable data swamps

Today: Data Lakehouses

Lakehouses
● Directly-accessible data in

open formats
● Reliability and Performance
● Flexibility and Scalability
● AI and BI workloads

2010s: DW challenges

Problems for Data Warehouses

● Closed, proprietary format
● Only structured data
● No support for data science, ML,

streaming
● Expensive to scale out

Streaming
Analytics

BI Data
Science

Machine
Learning

Structured, Semi-Structured and Unstructured
Data

Scalable, low-cost directly
accessible Cloud Data Lakes

Lakehouse Architecture

One platform for all Data use cases

Streaming
Analytics

BI Data
Science

Machine
Learning

Structured, Semi-Structured and Unstructured
Data

Scalable, low-cost directly
accessible Cloud Data Lakes

Lakehouse Architecture

Open, Transactional Layer for
Curated Data

One platform for all Data Use
Cases

High perf query engine(s)

One platform for all Data Use
CasesStreaming

Analytics
BI Data

Science
Machine
Learning

Scalable, low-cost directly
accessible Cloud Data Lakes

Structured, Semi-Structured and Unstructured
Data

Open, Transactional Layer for
Curated Data

Lakehouse Architecture

Streaming
Analytics

BI Data
Science

Machine
Learning

Structured, Semi-Structured and Unstructured
Data

Delta Lake: The Foundation of Lakehouses

One Data Foundation for BI, Data
Science & ML

■ Adds reliability, performance,
governance, and quality to existing
data lakes

■ Based on open data format (Parquet)
■ Simplifies data engineering with a

curated data lake approach

How to build a Lakehouse?

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is ready for consumption.

*Data Quality Levels *

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is ready for consumption.

*Data Quality Levels *

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is ready for consumption.

*Data Quality Levels *

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis 🔥

•Dumping ground for raw data
•Often with long retention (years)

BRONZE TABLE

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

● Intermediate data with some cleanup applied.
● Queryable for easy debugging!

🔥

SILVER TABLE

Data Lake

AI & Reporting

Streaming
Analytics

Business-level
Aggregates

Filtered, Cleaned
Augmented

Raw
Ingestion

Bronze Silver Gold

CSV,
JSON,
TXT…

Kinesis

Clean data, ready for consumption.

🔥

GOLD TABLE

Internals of

Scalable storage

Scalable transaction log

pathToTable/
+---- 000.parquet

 +---- 001.parquet +----
002.parquet

 + ...

● table data stored as Parquet files
on cloud storage

● sequence of metadata files to track
operations made on files in the table

● stored in cloud storage along with table
● read and process metadata in parallel

 |
 +---- _delta_log/

+---- 000.json
+---- 001.json
...

Contents of Delta Directory

Delta Transaction logs

Data VersioningACID
Transactions

Scalable
Metadata

Schema Evolution /
Enforcement

Open Source
DML

Operations

Unified
Batch/Streaming

Delta Lake Features

Curated Data

Raw Data

Semi-Structured Unstructured Data
Structured

Data reliability challenge # 1

Failed production jobs leave data in
corrupt state requiring tedious recovery

✗

Example: Data Corruption ✗

Run result unavailable: job failed with error message Unexpected failure
while waiting for the cluster (0422-091004-4zud3ebj) to be ready.Cause
Unexpected state for cluster (hhjj-02348-4zud3ebj):
BOOTSTRAP_TIMEOUT(SUCCESS):[id:
InstanceId(i-0f8a1c082d3aa434b), status: INSTANCE_INITIALIZING,
workerEnvId:WorkerEnvId(workerenv-28425385-ldsajlf-34832-sdf33-fdg-
ffvfbf), lastStatusChangeTime: 3794703740372, with threshold 700
seconds timed out after 704477 milliseconds. Please check network
connectivity from the data plane to the control
plane.,instance_id:i-7320kj2b3484

Data reliability challenge # 2

Lack of consistency makes it almost
impossible to mix appends and reads,
batch and streaming

Resolution of Consistency issues in Legacy Data
Pipelines

• New rows to be inserted

• Rows that will be replaced

• Rows that are not impacted

• Create a new temp

• Delete the original table

• "Rename" the temp table

• Drop the temp table

How Delta Lake solves consistency and data
corruption problems?

Changes to the table
are stored as ordered,
atomic commits

Each commit is JSON
file in _delta_log with
a set of actions

Transaction Log Commits

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

UPDATE actions

INSERT actions

 |
 +---- _delta_log/

+---- 000.json
+---- 001.json
...

Consistent Snapshots

UPDATE actions

INSERT actions

Readers read the log in
atomic units thus
reading consistent
snapshots

readers will read
either [001+002].parquet
or 003.parquet
and nothing in-between

 |
 +---- _delta_log/

+---- 000.json
+---- 001.json
...

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

ACID via Mutual Exclusion on Log Commits

Concurrent writers need to agree on
the order of changes (optimistic
concurrency control)

New commit files must be created
mutually exclusively using
storage-specific API guarantees

000.json

001.json

002.json

Writer 1 Writer 2

only one of the writers trying to
concurrently write 002.json

must succeed

Data reliability challenge # 3

Lack of schema enforcement
creates inconsistent and low
quality data

stream_query = generate_and_append_data_stream(
 table_format = "parquet",
 table_path = parquet_path)

Where did the two new columns `timestamp` and `value` come
from? And where did my existing rows go?

Example: Lack of schema Enforcement in
Parquet

Total records = 14705 Total records = 51TOTAL RECORDS = 51

How does Delta Lake enforce schema?

Example of schema handling in

Intentional
failure

Schema Evolution with
• Schema evolution allows users to easily change a tableʼs current schema to

accommodate data that is changing over time.
• Most commonly used operations for

• append
• overwrite

• Use .option('mergeSchema', 'true') to your .write or .writeStream
Spark command.

Performance features

Data Skipping

• Column min/max values
automatically collected when
writing files and committing to log

skipped as data range
outside selected value

file1.parquet

file2.parquet

file3.parquet

year: min 2018, max 2019
uid: min 12000, max 23000

year: min 2018, max 2020
uid: min 12000, max 14000

year: min 2020, max 2020
uid: min 23000, max 25000

SELECT * FROM events
WHERE year=2020 AND uid=24000

• Read queries can skip files
using min/max values

Generated Columns

• Automatically generate data for new columns
using any expression on other columns

• Compliant with SQL standards
• Can be used for partitioning or bucketing
• Automatic filter generation and data skipping

CREATE TABLE events(

 id bigint,

 idBucket bigint GENERATED ALWAYS AS (

 id % 100

),

 eventTime timestamp,

 eventDate date GENERATED ALWAYS AS (

 CAST(eventTime AS DATE)

)

)

USING delta

PARTITIONED BY (eventDate, idBucket)

id idBucket eventTime eventDate

1234 34 2021-05-24
09:00:00.000

2021-05-24

… WHERE eventTime < '2021-05-24

09:00:00.000'

… WHERE eventTime < '2021-05-24 09:00:00.000’

 AND eventDate < '2021-05-24'

generate
extra filter

4,0 5,0 6,0 7,0

4,1 5,1 6,1 7,1

4,2 5,2 6,2 7,2

4,4 5,4 6,4 7,4

4,5 5,5 6,5 7,5

4,6 5,6 6,6 7,6

4,7 5,7 6,7 7,7

0,0 1,0 3,0

0,1 1,1 3,1

0,2 1,2 3,2

0,4 1,4 3,4

0,5 1,5 3,5

0,6 1,6 3,6

0,7 1,7 3,7

2,0

2,1

2,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

2,4

2,5

2,6

2,7

Linear Order
0,0 1,0 4,0 5,0 6,0 7,0

0,1 1,1 4,1 5,1 6,1 7,1

0,4 1,4 4,4 5,4 6,4 7,4

0,5 1,5 4,5 5,5 6,5 7,5

0,6 1,6 4,6 5,6 6,6 7,6

0,7 1,7 4,7 5,7 6,7 7,7

2,0

2,1

2,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

2,4

2,5

2,6

2,7

3,0

3,1

0,2 1,2 3,2 4,2 5,2 6,2 7,2

3,4

3,5

3,6

3,7

Z-Order

SELECT * FROM points
WHERE x = 2 OR y = 3

9 files scanned in total 👎
21 false positives 👎

7 files scanned in total 👍
13 false positives 👍

x=2x=2

y=3

Optimize data layout
with Z-order

Multi-column data clustering
that is better than simple
multi-column sorting

With column stats, this
enables better data skipping
leading to faster queries

OPTIMIZE deltaTable
ZORDER BY (x, y)

Z-Ordering

Data Versioning with

▪ Audit

▪ Reproduce Experiments

▪ Rollbacks

SELECT * FROM my_table
TIMESTAMP AS OF “2020-05-01”

Pace of
innovation

Delta Lake Pace of Innovation Highlights

Sep 2019 (0.4)Apr 2019 (0.1) Apr 2020 (0.6)Dec 2019 (0.5) Feb 2021 (0.8)Jun 2020 (0.7)

● Open Source Delta Lake
● ACID Transactions
● Schema Management
● Scalable Metadata Handling
● Time Travel
● Unified Batch and Streaming

● Scala/Java APIs for DML commands
● Scala/Java APIs for query commit history
● Scala/Java APIs for vacuuming old files
● Python DML APIs
● Convert-to-Delta
● Python and SQL utility operations

● Support for other processing engines (via
manifest)

● Improved concurrency
● Improved file compaction
● Improved insert-only merge performance
● Convert-to-Delta using SQL
● Experimental Snowflake and Redshift

Spectrum support

● Support for schema evolution in merge
operations

● Improved merge performance with
automatic repartitioning

● Improved merge performance with no insert
clause

● Operation metrics in DESCRIBE HISTORY
● Support for reading Delta tables from any

file system

● Support for defining tables in the Hive
metastore

● Support for SQL DML
● Support for automatic and incremental

Presto/Athena manifest generation
● Support for controlling the retention of the

table history
● Support for adding user-defined metadata in

Delta table commits
● Support Azure Data Lake Storage Gen2
● Improved support for streaming one-time

triggers

● Unlimited MATCHED and NOT MATCHED clauses
for merge operations (Scala, Java, Python)

● MERGE operation now supports schema
evolution of nested columns

● MERGE INTO and UPDATE operations now resolve
nested struct columns by name

● Check constraints on Delta tables
● Start streaming a table from a specific version
● Ability to perform parallel deletes with VACUUM
● Use Scala implicits to simplify read and write

APIs

May 2021(1.0) Dec 2021 (1.1)

● Generated Columns
● Multi-cluster writes
● Cloud Independence
● Spark 3.1 Support
● PyPI Install
● Delta Everywhere

● Delta Standalone Writer
● Delta Sink for Apache Flink
● Delta Source for PrestoDB
● Delta Source for Apache Pulsar
● Performance improvements in

MERGE operation
● Support for Generated Columns in

MERGE operation

April 2022(1.2)

● Compacting small files (optimize)
into larger files

● Data skipping using column
statistics.

● S3 multi-cluster writes
● Table restore to an earlier

version.
● Column renaming without

rewriting files.
● Arbitrary characters support in

column names
● Automatic data skipping using

generated columns.
● Google Cloud storage support -

GA

Delta Lake 2.0
Unlock the power of Delta Lake

ACID
Transactions

Scalable
Metadata

Time Travel

Unified
Batch/Streaming

Schema
Enforcement

Audit History DML Operations

Compaction MERGE
Enhancements

Stream
Enhancements

Simplified
Logstore

OPTIMIZE OPTIMIZE
ZORDER

Change
data feed

Table Restore S3 Multi-cluster
writes

Data
Skipping via

Column Stats

Multi-part
checkpoint writes

Generated
Columns

Column
Mapping

Generated
column support
w/ partitioning

Identity
Columns

Subqueries in
deletes and

updates

Clones

Iceberg to Delta
converter

Deletion
Vectors

Coming Soon!

Schema
Evolution

52

SQL engines

Cloud platforms API Languages

Python

Rust

ruby

Scala

Azure
Synapse

Google
DataProc

Databricks

AWS
Athena

AWS Redshift
SpectrumPower BI

ETL and streaming
engines

kafka-del
ta-ingest

Delta Lake Ecosystem

Delta Lake performance
TPC-DS Benchmark Comparison (Higher is better)

Delta Lake is

1.9x faster than
Storage Format 1

4.3x faster than
Storage Format 2

Higher is better

5
4

Performance Optimizations roadmap
https://github.com/delta-io/delta/issues/920

Community
Adoption and Social Channels

Adoption of Delta Lake

1+
Exabytes

Processed /
day

50+
Companies

Contributing

6000+
Slack

Members

Delta Lake: Project MaturityThe Foundation of Lakehouse

The most widely used lakehouse format in the world

delta.io

delta-users
Slack

delta-users
Google Group

Delta Lake
YouTube channel

Delta Lake
GitHub Issues

Delta Lake
Linkedin

data-ai-online

/vinijaiswal @vini_jaiswal

Engage with Delta Lake community

Contributing to the Project
https://github.com/delta-io/delta/blob/master/CONTRIBUTING.md

GOOD FIRST
ISSUES

Participate in
a discussion

Create a Pull
Request

/vinijaiswal @vini_jaiswal

https://github.com/delta-io/delta/blob/master/CONTRIBUTING.md

Have questions, join our community AMAs
every two weeks

/vinijaiswal @vini_jaiswal

6
3

17+
Technical Sessions

Delta Lake - Use Cases
and Deep Dives

Ask Me Anything
Delta Lake Panels

Panel 1: June 28
10:30 AM PST

Panel 2: June 29
11:40 AM PST

Keynote
Delta Lake 2.0

June 28
10:30 AM PST

Come join the Delta Community at
the Data and AI Summit

● We have exciting line up of
technical sessions and events.

● You might also get a chance to
meet some of the creators!!!

Mascone Center, San Francisco
OR

Virtually for Free!

/vinijaiswal @vini_jaiswal

Thank you!

/vinijaiswal @vini_jaiswal

