DATA+AI

SUMMIT 2022

Ensuring Correct Distributed
Writes to Delta Lake in Rust
with Formal Verification

QP Hou

A bit about myself

https://about.hougp.me

o Currently core software lead at Neuralink
https://neuralink.com/careers/

e Formally tech-lead of Data and Al platform at Scribd
https://www.scribd.com/about/engineering
Delta-rs is a team effort between Christian (@xianwill), Mykhailo (@mosyp) and
Tyler (@rtyler).

e Authors and contributors of many open-source projects:
Delta-rs
Apache Arrow
Apache Airflow
ROAPI
KOReader

DATA+AI

SUMMIT 2022

https://neuralink.com/careers/
https://www.scribd.com/about/engineering
https://github.com/xianwill
https://github.com/mosyp
https://github.com/rtyler
https://github.com/delta-io/delta-rs
https://arrow.apache.org/
https://github.com/apache/airflow
https://github.com/roapi/roapi
https://github.com/koreader/koreader

Delta-rs

e Native Delta lake implementation in pure Rust
With Python and Ruby bindings

e Previous Data+Al 2021 talk:
https://databricks.com/session na2l/growing
-the-delta-ecosystem-to-rust-and-python-

. nS
with-delta-rs DE LTA LAKE

DATA+AI 5

SUMMIT 2022

https://databricks.com/session_na21/growing-the-delta-ecosystem-to-rust-and-python-with-delta-rs
https://databricks.com/session_na21/growing-the-delta-ecosystem-to-rust-and-python-with-delta-rs
https://databricks.com/session_na21/growing-the-delta-ecosystem-to-rust-and-python-with-delta-rs

Agenda

Delta Lake 101

Distributed concurrent table writes in delta-rs
Formal verification overview

Intro to stateright

DATA+AI

SUMMIT 2022

Delta Lake 101

2222222222

What is a Delta lake anyway?

Brings ACID to traditional data warehouse solution
Single data source for both batching and streaming workload

DATA+AI

SUMMIT 2022

Traditional data warehouse

-

a.parquet b.parquet c.parquet

_

DATA+AI

2222222222

Delta Lake's transaction log

-

a.parquet b.parquet c.parquet

add

B
JSON
nunn

0.json

{a, b, c}.parquet

_

DATA+AI

2222222222

Delta Lake's transaction log

a.parquet b.parquet d.parquet
add
E B
IR eee eee s JSON
XXX XX
0.json n.json
{a, b, c}.parquet

DATA+AI

2222222222

Delta Lake's transaction log

-

a.parquet b.parquet d.parquet
dd
Sdd a add rem:\& add
B B B
NI NI cees see see NI
XXX XX XX
0.json 1.json n.json
{a, b, c}.parquet {a, b, d}.parquet

_

DATA+AI

SUMMIT 2022

Concurrent table writes

.
g
—

_

DATA+AI

2222222222

Concurrent table writes

Optimistic concurrency control

-

PUT 1.json if absent

PUT 1.json if absent
—

PUT 1.json if absent

o
o
o

1.json

_

DATA+AI

SUMMIT 2022

Concurrent table writes

Optimistic concurrency control

-

_

-
o
o I

PUT1Json|fabsent

\\
\\
—_—

PUT 1.json if absent

DATA+AI

SUMMIT 2022

Concurrent table writes

Optimistic concurrency control

-

_

a PUT 2.json if absent

—’—
-—
—

DATA+AI

SUMMIT 2022

Concurrent table writes

Optimistic concurrency control

-

Em

3.json

6

PUT 3.json if absent

_

DATA+AI

2222222222

Safe concurrent
write 1n S3

DATA+AI

2222222222

S3 limitation

S3 doesn't support PUT if
absent operation

DATA+AI

SUMMIT 2022

PUT 0.json if absent

PUT 0.json if absent

AWS S3

Two design directions

Use DynamoDB as the log store
Less complexity, a lot easier to implement

Use DynamoDB to implement put if absent for S3
Fully transparent and compatible with other Delta Lake readers

DATA+AI

SUMMIT 2022

18

Let's use a distributed lock?

o

L

DynamoDB based
Distributed lock

DATA+AI

2222222222

DynamoDB as a distributed lock

How hard could it possibly be?

o

L

DynamoDB based
Distributed lock

What if one of the
writers crashed while
holding the lock?

DATA+AI

SUMMIT 2022

Distributed lock with an expiration
How hard could it possibly be?

o

If one writer crashed while
holding the lock,
it will eventually expire so

\ 0 another writer can acquire it.

DynamoDB based
Distributed lock

L

DATA+AI

SUMMIT 2022

Distributed lock with an expiration

How hard could it possibly be?

o

L

DynamoDB based
Distributed lock

Expirable distributed lock is a scam!

DATA+AI

2222222222

Distributed lock with an expiration
How hard could it possibly be?

-

If one writer paused while
holding the lock,
it will eventually expire so

\ 0 another writer will acquire it.

DynamoDB based
Distributed lock

_

DATA+AI

SUMMIT 2022

Distributed lock with an expiration

Time

T0

T1

T2

T3

T4

T5

DATA+AI

SUMMIT 2022

Writer A

Acquired lock

Paused

Lock expired

Resumed

| have the lock!

Writer B

Acquired expired lock

| have the lock!

-

If one writer paused while
holding the lock,

it will eventually expire so
another writer will acquire it.

PUT if absent using repairs

Write commit to a temp S3 location
Copy from s3://table/{uuid}.json to s3://table/l.json is idempotent

Atomically acquire the lock with recorded S3 copy operation
Expired lock needs to be repaired by another writer

DATA+AI

SUMMIT 2022

25

PUT if absent using repairs

Time Writer A Writer B

TO Acquired lock with “copy uuid_a.json to 1.json”

T1 Paused

T2 Lock expired

T3 Acquired expired lock with “copy uuid_b.json to 1.json”
T4 Repair lock by executing “copy uuid_a.json to 1.json”
T5 Resumed

T6 copy uuid_a.json to 1.json

T7 Release the lock

T8 Release the lock

T9 Retry acquiring the lock with “copy uuid_b.json to 2.json”

DATA+AI

SUMMIT 2022

PUT if absent using repairs

e Full design discussion available at
https://github.com/delta-io/delta-rs/discussions/89
e Dynamodb based lock implemented from scratch in Rust:

https://crates.io/crates/dynamodb_lock
Shout out to my ex-colleague Mykhailo Osypov (@mosyp)

DATA+AI

SUMMIT 2022

27

https://github.com/delta-io/delta-rs/discussions/89
https://crates.io/crates/dynamodb_lock
https://github.com/mosyp

PUT if absent using repairs

Time

T0

T1

T2

T3

T4

T5

T6

T7

T8

Writer A

Acquired lock
Paused

Lock expired

Resumed

Do work

Release the lock

DATA+AI

SUMMIT 2022

Writer B

Acquired expired lock

Repair lock by executing

Release the lock

Writer C

Writer D

Writer ...

Enter formal
verification

DATA+AI

2222222222

Informal verifications are everywhere

Static type checks
Assert desired properties by enforcing type constraints

Unit tests
Assert desired properties by matching inputs with expected outputs

DATA+AI

SUMMIT 2022

30

Formal verification approaches

Model checking

Exhaustive state exploration

Deductive reasoning
Ensure conformance of system specifications through mathematical proofs

DATA+AI

SUMMIT 2022

31

Model checker state exploration example

Time | Writer A Writer B

TO Acquired lock Writer A:

e Paused

T1 Paused e Held an expired lock

T2 Lock expired Writer B:

T3 T e e Nere e Acquired an expired lock

T4

DATA+AI

SUMMIT 2022

Model checker state exploration example

Time | Writer A Writer B
T0 Acquired lock Writer A:
e Paused
T Paused e Held an expired lock
T2 Tried to acquire lock

Writer B:

T3 Vel araieg e Failed to acquire lock

T4

DATA+AI

SUMMIT 2022

Model checker industrial use

o TLA+
AWS S3
Azure cosmos DB
Intel multi-processor cache-coherence protocols
See https://lamport.azurewebsites.net/tla/industrial-use.html

DATA+AI

SUMMIT 2022

34

https://lamport.azurewebsites.net/tla/industrial-use.html

Shortcomings of TLA+

Steep learning curve
Rough tooling
Separation of proof and implementation

DATA+AI

SUMMIT 2022

35

Intro to
stateright

DATA+AI

2222222222

Stateright

e Model checker as a Rust library
Comparison with TLA+: https://www.stateright.rs/comparison-with-tlaplus.html

e Homepage: https://www.stateright.rs/

DATA+AI

SUMMIT 2022

37

https://www.stateright.rs/comparison-with-tlaplus.html
https://www.stateright.rs/

Stateright

Specify systems as state machines

. Mo LAYV '
init_states(&
actions(é&s

self) -> Vec<Self::State>(i}
next_state(

1f, state: &Self::State, actions: &m

1F

o>C L]
- !

last_state: &Self::State,
action: Self::Action
-> Option<Self::State>;
properties(&self)

-> Vec<Property<Self>>({i){ ... }

DATA+AI

SUMMIT 2022

4+
| i
i U

Vec<Self::Action>);

38

Stateright

Specify systems as state machines

e See delta-rs's full stateright proof at
https://github.com/delta-io/delta-rs/blob/main/proofs/src/main.rs

(about 500 lines of Rust code)

DATA+AI

SUMMIT 2022

39

https://github.com/delta-io/delta-rs/blob/main/proofs/src/main.rs

Stateright

High level state machine based actor interface

g: Clone + Debug + Eq + Hash;
State: Clone + Debug + PartialEq + Hash;
start(&self, 1d: Id, o: &mut Out<Self>)

msg(
&self,
id: Id,
state: &mut Cow<'_, Self::State>,
src: Id,
msg: Self::Msg,
0: &mut OQut<Self>
) Lo }
fn on_timeout(
&self,
id: Id,
state: &mut Cow<' , Self::State>,
0: &mut Out<Self>

DATA+AI

SUMMIT 2022

Self: :State;

40

s formal verification worth it?

Yes!

e The exercise of formalization forces you to really think through the
design step by step
We discovered a couple of design bugs during this process
e Automated model checking caught one correctness bug that all of us
missed:

https://github.com/delta-io/delta-rs/pull/540#issue-1097376239

DATA+AI

SUMMIT 2022

4]

https://github.com/delta-io/delta-rs/pull/540#issue-1097376239

Stateright Explorer APl Docs Book Crate Source

Status

» Model: AtomicRenameSys
« States: 287,395

» Unique States: 116,479

» Progress: Done

Properties

* A\ Counterexample found: Always no overwrite

« W Safety holds: Always no unexpected rename

« W Safety holds: Always not retry on successful rename

« W Liveness holds: Eventually all writer clean shutdown

« W Liveness holds: Eventually all source objects are purged

« A\ Counterexample found: Eventually all renames are performed
« W Example found: Sometimes lock contention

Path of Actions

. Pre-init

. Init ©

. TryAcquirelock(0)

. NewVersionObjectCheckExists(0)
. TryAcquirelock(1)

. TryAcquirelLock(1)

. TryAcquirelLock(1)

. TryAcquirelock(1)

. RepairObjectCheckExists(1)

. RepairObjectCopy(1)

. UpdatelLockData(1)

. NewVersionObjectCheckExists(1)
. NewVersionObjectCopy(0©)

MNew\VersionObjectCopy(1)

Next Action Choices

» OldVersionObjectDelete(0)
* 0OldVersionObjectDelete(1)
» TryAcquirelock(2)

OO ~NOOOE WN =

I S S
B WK RO

Current State B Complete State? B Compact?

@ :
AtomicRenameState {
writer_ctx: [

1.

WriterContext {
state: NewVersionObjectCopied,
lock_data: LockData {
dst: 76",
src: "writer_0",
}
acquired_expired_lock: false,
released_expired_lock: false,
rename_err: None,
target_version: 0,
3
WriterContext {
state: NewVersionObjectCopied,
lock_data: LockData {
dst: 76",
src: "writer_1",
}
acquired_expired_lock: false,
released_expired_lock: false,
rename_err: None,
target_version: 0,
3
WriterContext {
state: Init,
lock_data: LockData {
dst: ®",
Srez B
}
acquired_expired_lock: false,
released_expired_lock: false,
rename_err: None,
target_version: 0,

}

lock: Some(

Globallock {

data: LockData {
Aot non

Building efficient, safe and correct systems

Rust compiler guarantees absence of unsafe memory access bugs
No more segfaults and race conditions

Formal verification removes logical bugs*
Model checking as a library (stateright) to keep proofs and
implementations in sync

DATA+AI

SUMMIT 2022

43

DATA+AI

SUMMIT 2022

https://about.houqp.me/

