
1

QP Hou

Ensuring Correct Distributed 
Writes to Delta Lake in Rust

with Formal Verification



A bit about myself
https://about.houqp.me

● Currently core software lead at Neuralink
○ https://neuralink.com/careers/

● Formally tech-lead of Data and AI platform at Scribd
○ https://www.scribd.com/about/engineering
○ Delta-rs is a team effort between Christian (@xianwill), Mykhailo (@mosyp) and 

Tyler (@rtyler).

● Authors and contributors of many open-source projects:
○ Delta-rs
○ Apache Arrow
○ Apache Airflow
○ ROAPI
○ KOReader
○ … 2

https://neuralink.com/careers/
https://www.scribd.com/about/engineering
https://github.com/xianwill
https://github.com/mosyp
https://github.com/rtyler
https://github.com/delta-io/delta-rs
https://arrow.apache.org/
https://github.com/apache/airflow
https://github.com/roapi/roapi
https://github.com/koreader/koreader


Delta-rs

● Native Delta lake implementation in pure Rust
○ With Python and Ruby bindings

● Previous Data+AI 2021 talk: 
https://databricks.com/session_na21/growing
-the-delta-ecosystem-to-rust-and-python-
with-delta-rs

3

https://databricks.com/session_na21/growing-the-delta-ecosystem-to-rust-and-python-with-delta-rs
https://databricks.com/session_na21/growing-the-delta-ecosystem-to-rust-and-python-with-delta-rs
https://databricks.com/session_na21/growing-the-delta-ecosystem-to-rust-and-python-with-delta-rs


Agenda

● Delta Lake 101
● Distributed concurrent table writes in delta-rs
● Formal verification overview
● Intro to stateright

4



5

Delta Lake 101



What is a Delta lake anyway?

● Brings ACID to traditional data warehouse solution
● Single data source for both batching and streaming workload

6



Traditional data warehouse

7

a.parquet b.parquet c.parquet



Delta Lake’s transaction log

8

a.parquet b.parquet c.parquet

0.json

{a, b, c}.parquet

add
add add



Delta Lake’s transaction log

9

a.parquet b.parquet c.parquet d.parquet

0.json

{a, b, c}.parquet

add
add add

n.json

 … … …



Delta Lake’s transaction log

10

a.parquet b.parquet c.parquet d.parquet

0.json

{a, b, c}.parquet

add
add add

1.json

{a, b, d}.parquet

addremove

n.json

 … … …



Concurrent table writes

PUT 1.json

PUT 1.json

PUT 1.json
1.json



Concurrent table writes

PUT 1.json if absent

PUT 1.json if absent

PUT 1.json if absent
1.json

Optimistic concurrency control



Concurrent table writes

PUT 1.json if absent

PUT 1.json if absent

PUT 1.json if absent
1.json

Optimistic concurrency control



Concurrent table writes

PUT 2.json if absent

PUT 2.json if absent
2.json

Optimistic concurrency control



Concurrent table writes

PUT 3.json if absent
3.json

Optimistic concurrency control



16

Safe concurrent 
write in S3



S3 limitation

S3 doesn’t support PUT if 
absent operation

17

PUT 0.json if absent

PUT 0.json if absent

PUT 0.json if absent AWS S3



Two design directions

● Use DynamoDB as the log store
○ Less complexity, a lot easier to implement

● Use DynamoDB to implement put if absent for S3
○ Fully transparent and compatible with other Delta Lake readers

18



Let’s use a distributed lock?

DynamoDB based
Distributed lock

try_lock

try_lock

try_lock



DynamoDB as a distributed lock
How hard could it possibly be?

DynamoDB based
Distributed lock

What if one of the 
writers crashed while 
holding the lock?



Distributed lock with an expiration
How hard could it possibly be?

DynamoDB based
Distributed lock

If one writer crashed while 
holding the lock, 
it will eventually expire so 
another writer can acquire it.



Distributed lock with an expiration
How hard could it possibly be?

DynamoDB based
Distributed lock

Expirable distributed lock is a scam!



Distributed lock with an expiration
How hard could it possibly be?

DynamoDB based
Distributed lock

If one writer paused while 
holding the lock, 
it will eventually expire so 
another writer will acquire it.



Distributed lock with an expiration
How hard could it possibly be?

If one writer paused while 
holding the lock, 
it will eventually expire so 
another writer will acquire it.

Time Writer A Writer B

T0 Acquired lock

T1 Paused

T2 Lock expired

T3 Acquired expired lock

T4 Resumed

T5 I have the lock! I have the lock!



PUT if absent using repairs

● Write commit to a temp S3 location
○ Copy from s3://table/{uuid}.json to s3://table/1.json is idempotent

● Atomically acquire the lock with recorded S3 copy operation
● Expired lock needs to be repaired by another writer

25



PUT if absent using repairs

Time Writer A Writer B

T0 Acquired lock with “copy uuid_a.json to 1.json”

T1 Paused

T2 Lock expired

T3 Acquired expired lock with “copy uuid_b.json to 1.json”

T4 Repair lock by executing “copy uuid_a.json to 1.json” 

T5 Resumed

T6 copy uuid_a.json to 1.json

T7 Release the lock

T8 Release the lock

T9 Retry acquiring the lock with “copy uuid_b.json to 2.json”



PUT if absent using repairs

● Full design discussion available at 
https://github.com/delta-io/delta-rs/discussions/89

● Dynamodb based lock implemented from scratch in Rust: 
https://crates.io/crates/dynamodb_lock
○ Shout out to my ex-colleague Mykhailo Osypov (@mosyp)

27

https://github.com/delta-io/delta-rs/discussions/89
https://crates.io/crates/dynamodb_lock
https://github.com/mosyp


PUT if absent using repairs
What if we have more than two writers?

Time Writer A Writer B Writer C Writer D Writer …

T0 Acquired lock

T1 Paused

T2 Lock expired

T3 Acquired expired lock

T4 Repair lock by executing

T5 Resumed

T6 Do work

T7 Release the lock

T8 Release the lock



29

Enter formal 
verification



Informal verifications are everywhere

● Static type checks
○ Assert desired properties by enforcing type constraints

● Unit tests
○ Assert desired properties by matching inputs with expected outputs

30



Formal verification approaches

● Model checking
○ Exhaustive state exploration

● Deductive reasoning
○ Ensure conformance of system specifications through mathematical proofs

31



Model checker state exploration example
Possible state 1

Time Writer A Writer B

T0 Acquired lock

T1 Paused

T2 Lock expired

T3 Tried to acquire lock

T4 … …

Writer A:
● Paused
● Held an expired lock

Writer B:
● Acquired an expired lock



Model checker state exploration example
Possible state 2

Time Writer A Writer B

T0 Acquired lock

T1 Paused

T2 Tried to acquire lock

T3 Locked expired

T4 … …

Writer A:
● Paused
● Held an expired lock

Writer B:
● Failed to acquire lock



Model checker industrial use

● TLA+
○ AWS S3
○ Azure cosmos DB
○ Intel multi-processor cache-coherence protocols
○ See https://lamport.azurewebsites.net/tla/industrial-use.html

34

https://lamport.azurewebsites.net/tla/industrial-use.html


Shortcomings of TLA+

● Steep learning curve
● Rough tooling
● Separation of proof and implementation

35



36

Intro to 
stateright



Stateright

● Model checker as a Rust library
○ Comparison with TLA+: https://www.stateright.rs/comparison-with-tlaplus.html

● Homepage: https://www.stateright.rs/

37

https://www.stateright.rs/comparison-with-tlaplus.html
https://www.stateright.rs/


Stateright
Specify systems as state machines

38



Stateright
Specify systems as state machines

● See delta-rs’s full stateright proof at 
https://github.com/delta-io/delta-rs/blob/main/proofs/src/main.rs 
(about 500 lines of Rust code)

39

https://github.com/delta-io/delta-rs/blob/main/proofs/src/main.rs


Stateright
High level state machine based actor interface

40



Is formal verification worth it?
Yes!

● The exercise of formalization forces you to really think through the 
design step by step
○ We discovered a couple of design bugs during this process

● Automated model checking caught one correctness bug that all of us 
missed: 
https://github.com/delta-io/delta-rs/pull/540#issue-1097376239

41

https://github.com/delta-io/delta-rs/pull/540#issue-1097376239


42



Building efficient, safe and correct systems
Combining Rust and Formal verification

● Rust compiler guarantees absence of unsafe memory access bugs
○ No more segfaults and race conditions

● Formal verification removes logical bugs*
● Model checking as a library (stateright) to keep proofs and 

implementations in sync

43



44

QP Hou
https://about.houqp.me/

Thank you


