

MC² Platform:

Rishabh Poddar

Co-Founder & CEO

Enabling Learning on Confidential Data

Opaque systems

ORGANIZED BY Sdatabricks

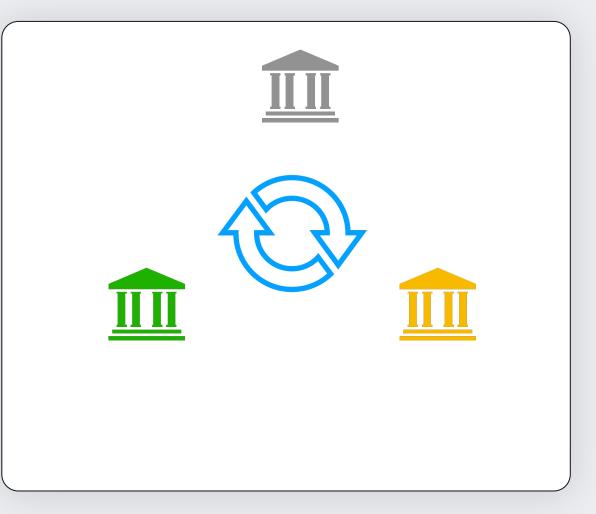
The Problem

Organizations often

wish to learn from cross-organization data but have confidential data they cannot share

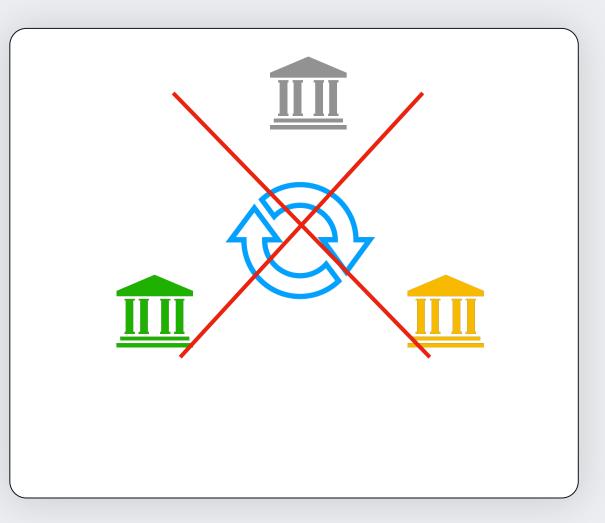
Example: Anti-money laundering

- Banks want to detect money laundering
- Criminals hide their traces across
 different banks



Example: Anti-money laundering

- Banks want to detect money laundering
- Criminals hide their traces across different banks
- To detect money laundering, one needs to learn from multiple banks
- But banks can't share data due to competition / data confidentiality restrictions

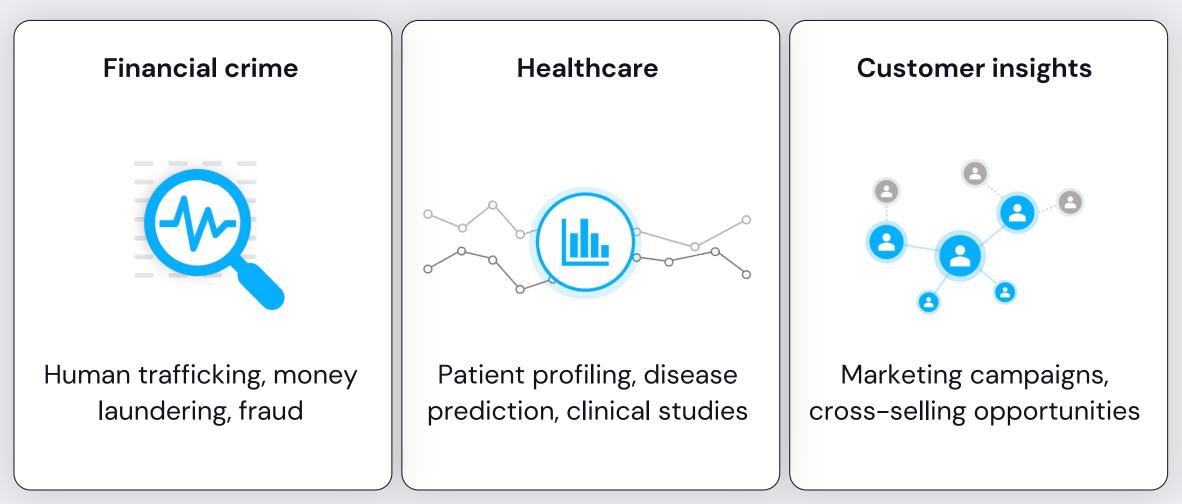


"So In the future, *collaboration will be vital*: across the financial-services industry, government, and law enforcement. The ability to put together our data sets and collaborate on typologies of attack — and the use of both advanced-encryption methods and analytics methods to mine the data *will enhance yields by orders of magnitude*."

Chief Risk Officer, Scotiabank

Many use cases across industries

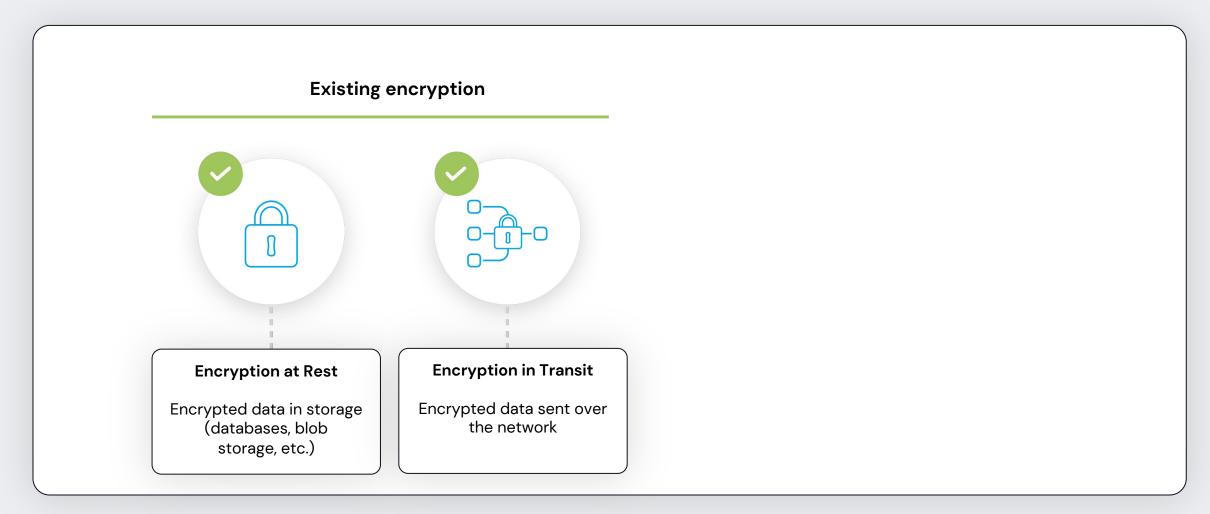
Confidential data locked down in silos, but holds tremendous value



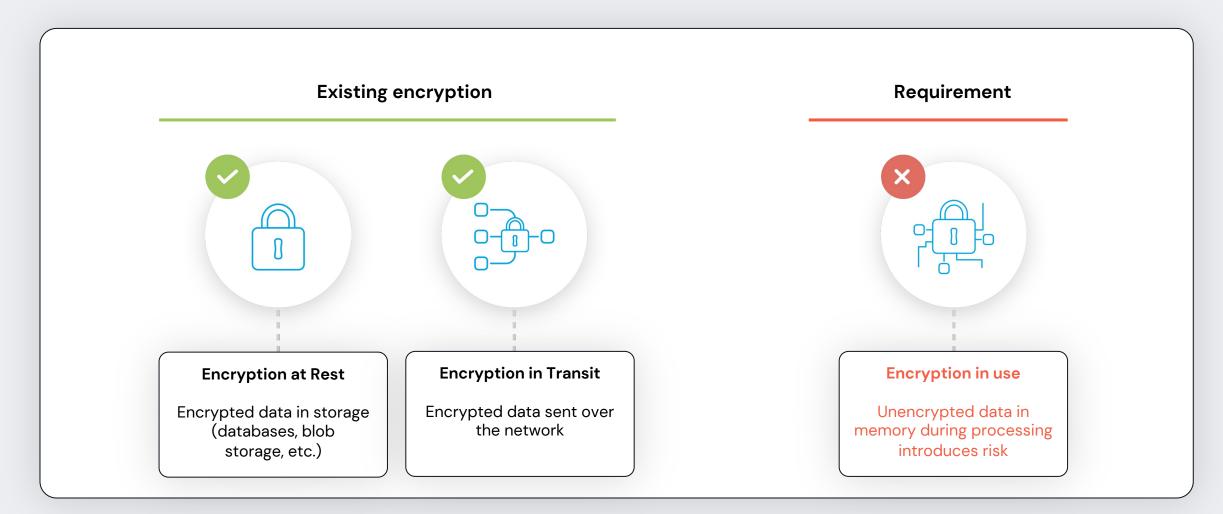
DATA+A SUMMIT 2022

How to solve without trusted third parties?

Requirement: Protecting data in use



Requirement: Protecting data in use



MC2: Multi-party Confidential Computing

github.com/mc2-project/mc2

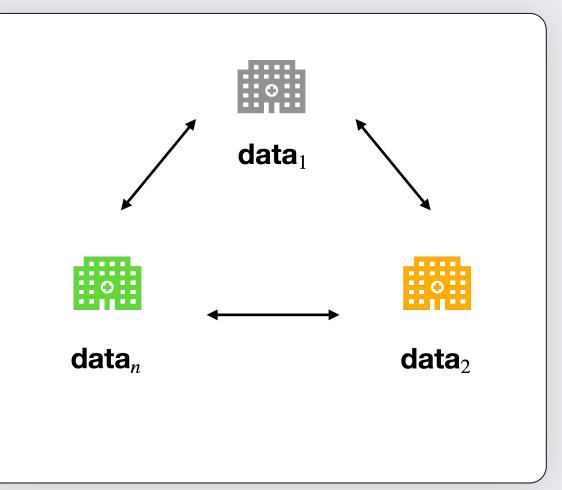
Analytics and machine learning on confidential data

"Sharing without showing the data"

Each with its own tradeoffs

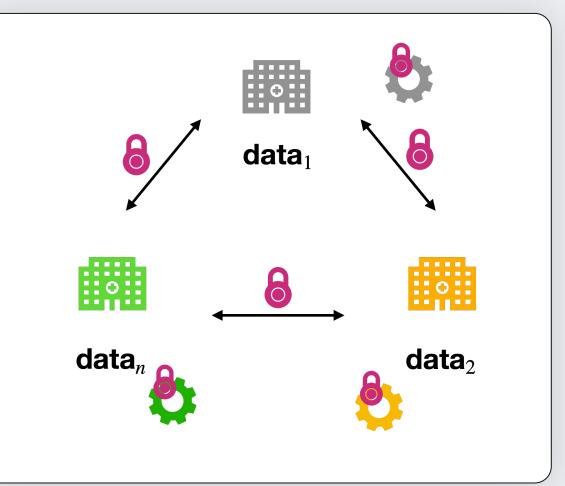
1 Cryptographic protocols: MPC / Homomorphic encryption

 Parties compute F(data_1, ..., data_n) without any party learning the data of another beyond the function result

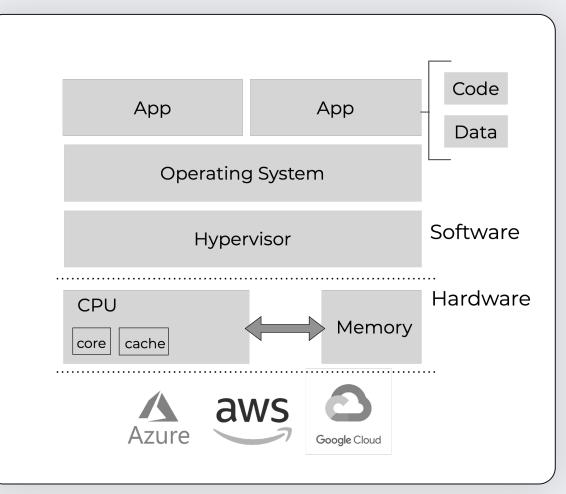


1 Cryptographic protocols: MPC / Homomorphic encryption

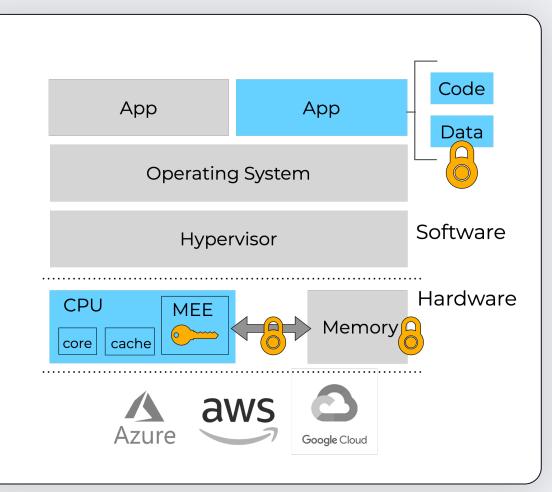
- Parties compute F(data_1, ..., data_n) without any party learning the data of another beyond the function result
- They exchange encrypted data and compute on encrypted data



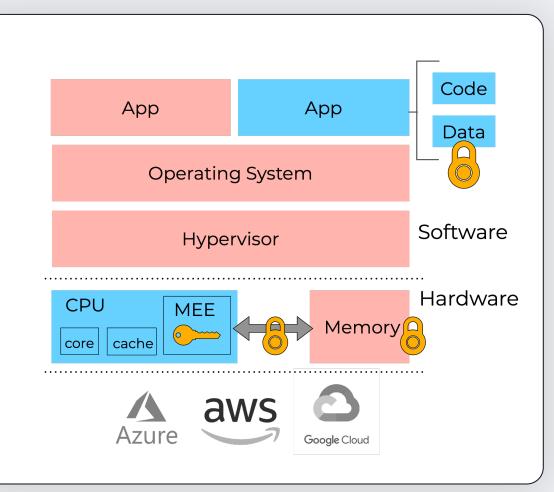
2 Secure hardware enclaves (e.g. Intel SGX)



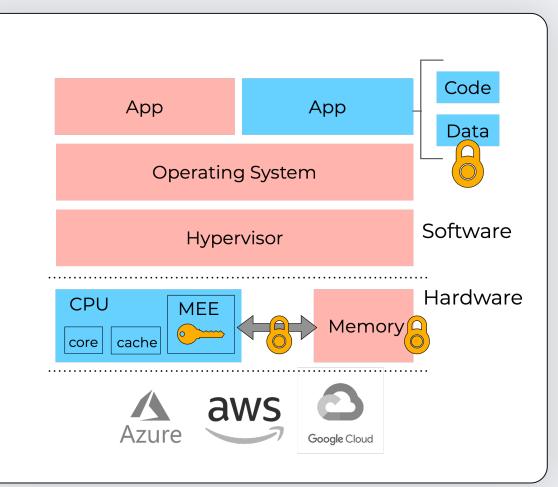
- 2 Secure hardware enclaves (e.g. Intel SGX)
- Hardware-enforced isolated execution environment — protects against attackers with root access or compromised OS



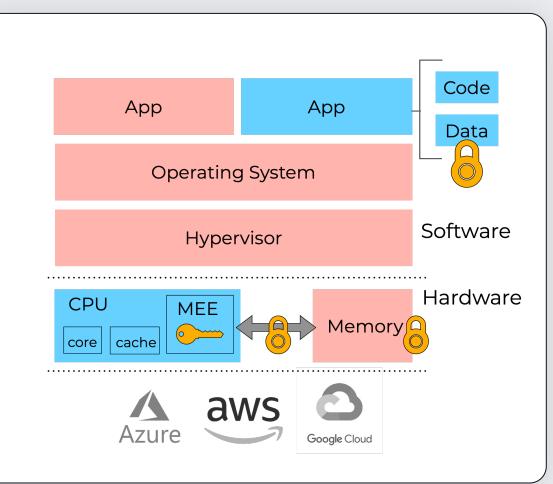
- 2 Secure hardware enclaves (e.g. Intel SGX)
- Hardware-enforced isolated execution environment — protects against attackers with root access or compromised OS



- 2 Secure hardware enclaves (e.g. Intel SGX)
- Hardware-enforced isolated execution environment — protects against attackers with root access or compromised OS
- Remote client can verify enclave code via remote attestation



- 2 Secure hardware enclaves (e.g. Intel SGX)
- Hardware–enforced isolated execution environment — protects against attackers with root access or compromised OS
- Remote client can verify enclave code via remote attestation
- Supported by major CPU vendors and cloud providers



Each with its own tradeoffs

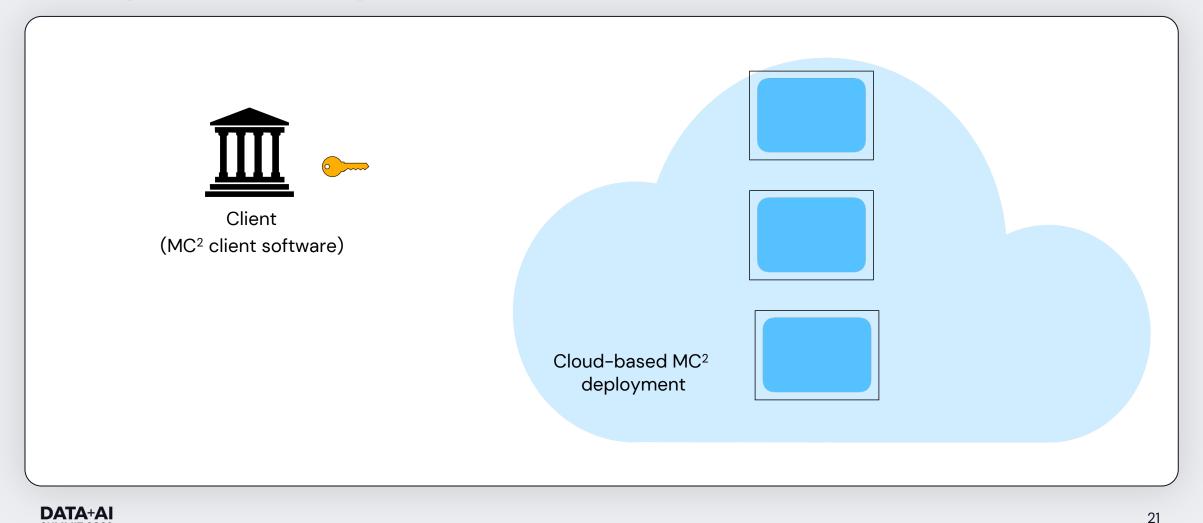
	Cryptographic Protocols (FHE, MPC)	Secure hardware enclaves (e.g. Intel SGX)
Efficiency	Prohibitively slow for complex analytics / ML training	Can support arbitrary workloads nearly as scalable as plaintext computation
Security	Private data always remains encrypted, but FHE does not provide integrity of data and computation	Private data and models remain encrypted in memory but can be vulnerable to side-channels

Each with its own tradeoffs

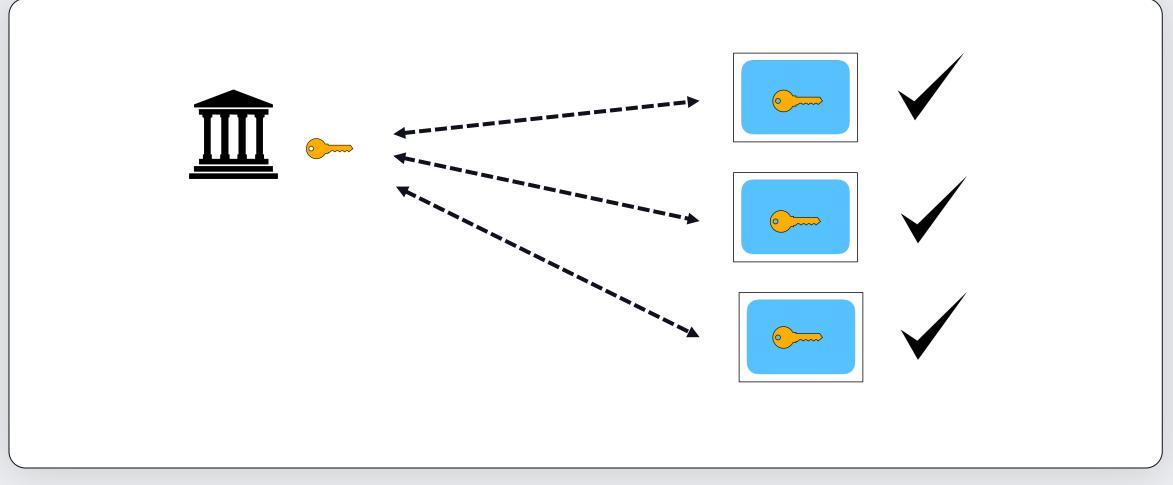
	Cryptographic Protocols (FHE, MPC)	Secure hardware enclaves (e.g. Intel SGX)
Efficiency	Prohibitively slow for complex analytics / ML training	Can support arbitrary workloads nearly as scalable as plaintext computation
Security	Private data always remains encrypted, but FHE does not provide integrity of data and computation	Private data and models remain encrypted in memory but can be vulnerable to side-channels Addressed via
DATA+AI		cryptographic fortification in MC2

SUMMIT 2022

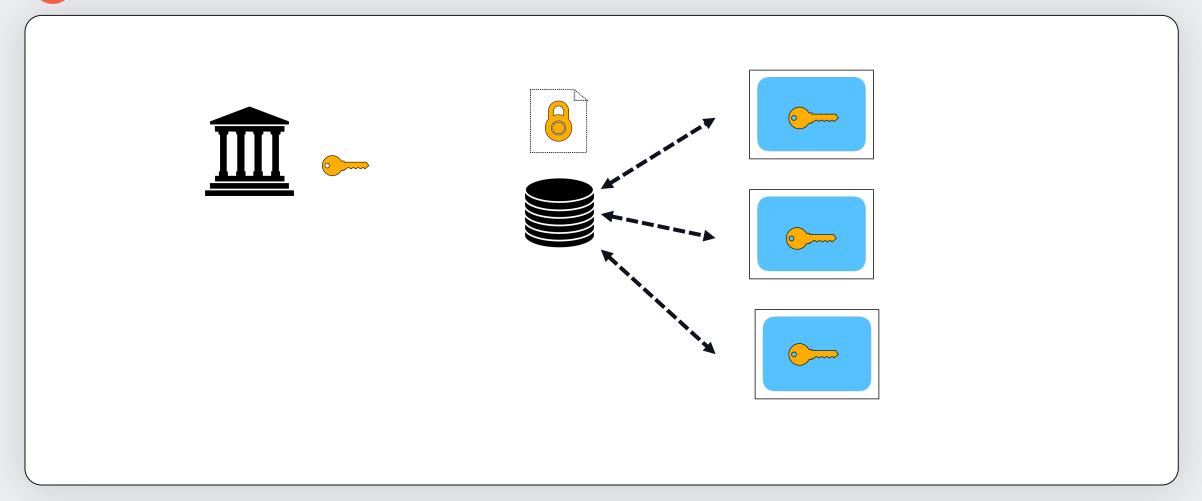
Setup: Cluster of secure hardware enclaves in the cloud



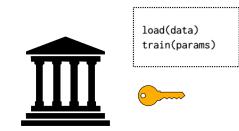
1 Client verifies enclave cluster via remote attestation



2 Client transfers encrypted data to the cloud

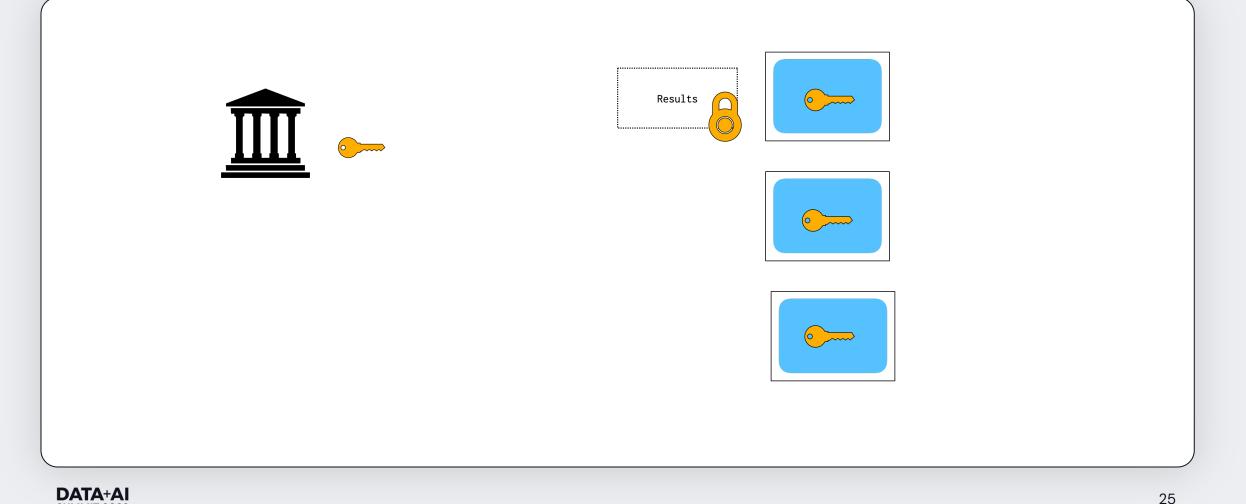


3 Client submits job / script

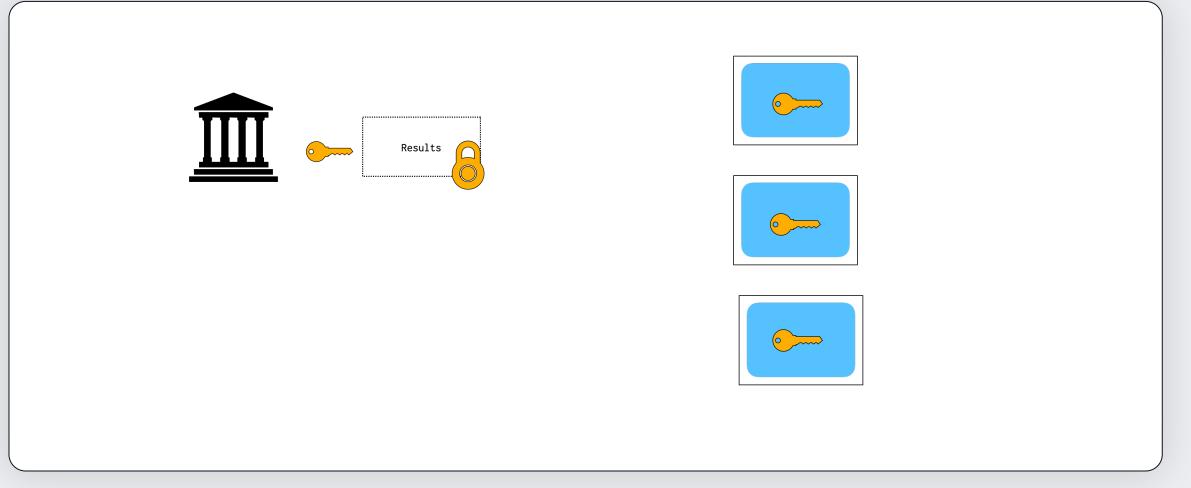


SUMMIT 2022

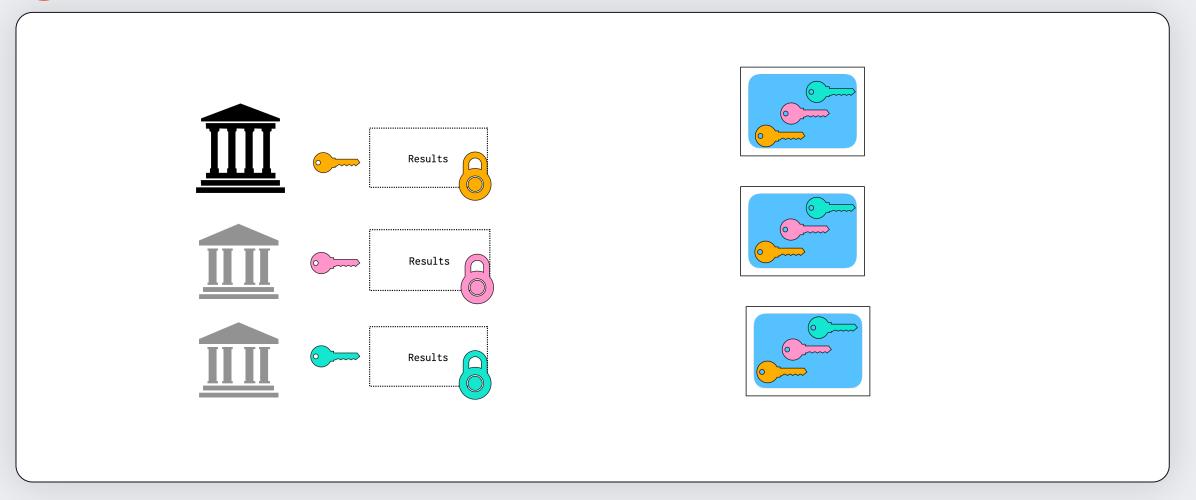
3 MC² processes the data and outputs encrypted results



3 MC² processes the data and outputs encrypted results

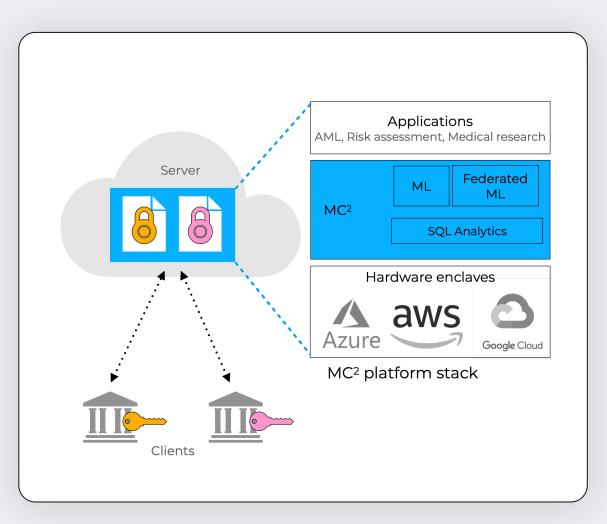


3 MC² processes the data and outputs encrypted results



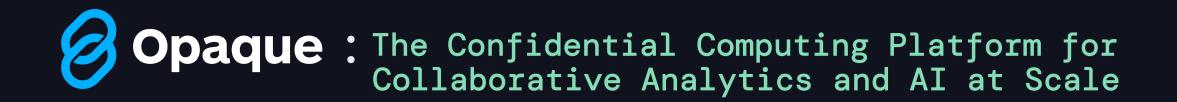
Platform

- Easy-to-use, efficient
 - Spark SQL
 - Machine learning (e.g. XGBoost)
 - Federated learning
- Adoption / collaborators



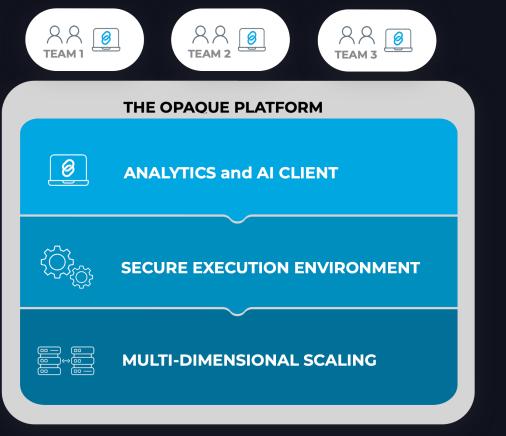
Demo

Demo: MC² on Azure



https://opaque.co

Opaque : The Confidential Computing Platform for Collaborative Analytics and AI at Scale



Instantiate clusters, set policies, enable SQL-based analytics and AI / ML models using standard tools

Execute confidential collaborative analytics, AI / ML and data sharing on encrypted data

Enable secure inter-enclave communication, orchestration and multi-cloud operations

https://opaque.co

MC² Summary

Contact us if you want to collaborate!

https://github.com/mc2-project/mc2

mc2-project.slack.com

mc2-dev@googlegroups.com

<u>rishabh@opaque.co</u>

DATA+AI SUMMIT 2022

Thank you

Rishabh Poddar Co-Founder and CEO Opaque

<u>rishabh@opaque.co</u>