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Agenda

• Evolution to a Lakehouse

• Why automating DWH development?

• Spark framework for automating 

DWH development

• DataOps for BI

• Bridge between BI and modern 

use cases



Evolution of data architectures
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• Centralizes data from 
different sources

• Structured data

• Limitation with the increase in 
variety of data

…from data warehouses to data lakes…

• Support for both structured 
and unstructured data

• Low-cost storage
• Open file formats



Challenges with Data Lakes
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Append new data and 
consistent reads on data

Modifying existing 
data on data lakes

Reliability and data quality Real-time support

Data versioning

Metadata management

Performance issues



Data Lakehouse design

• Leverage data from data lakes

• Solving reliability and quality challenges in data lakes

• Optimized performance

• Support for machine learning and BI together

• Improved governance and security

• Extended file, tool and language support
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Source: Databricks



Why running DWH workloads in a Lakehouse
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• Lookup of foreign keys to 
dimensions

• Lookup to both SCD1 
and SCD2 type of 
dimensions

• Write merge queries to 
“upsert” data to gold

Creation of facts

• Create incremental integer 
primary keys

• Create dummy primary keys 
for missing records 

• Auto increment keys for new 
records 

• Write merge queries to 
“upsert” data to gold

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake 
from bronze and 
creating dataframes and 
views with schema in Spark

Reading bronze tables
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Hundreds of 
source tables



• Lookup of foreign keys to 
dimensions

• Lookup to both SCD1 
and SCD2 type of 
dimensions

• Write merge queries to 
“upsert” data to gold

Creation of facts

• Create incremental integer 
primary keys

• Create dummy primary keys 
for missing records 

• Auto increment keys for 
existing records 

• Write merge queries to 
“upsert” data

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake 
from bronze and 
creating dataframes and 
views with schema in Spark

Reading bronze tables
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Many 
dimension
tables

Hundreds of 
source tables



• Lookup of foreign keys to 
dimensions based on config 
file

• Lookup to both SCD1 
and SCD2 type of 
dimensions

• Write merge queries to 
“upsert” data to gold

Creation of facts

• Create incremental integer 
primary keys

• Create dummy primary keys 
for missing records 

• Auto increment keys for 
existing records 

• Write merge queries to 
“upsert” data

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake 
from bronze and 
creating dataframes and 
views with schema in Spark

Reading bronze tables
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Many 
dimension 
tables

Many
fact tables

Hundreds of 
source tables



Data modelling in a Lakehouse
Modernize and automate DWH development
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• Read raw data

• Build business logic 
into fact and 
dimension tables

• Stage data in silver 
layer as delta lake

• Creation of surrogate 
keys

• Build relationships -
lookup of foreign keys

• Upsert into gold layer 
delta lake



How can we implement DWH principles on 
data lakes
Delta Lake brings ACID transactions to Data lake

• Atomicity: every transaction is logged in 
transaction log

• Consistency: serializable isolation on write

• Isolation: concurrent writes

• Durability: available in case of failures
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Spark framework for DWH development
Delta Lake for high data quality

• Transaction log to guarantee atomicity

• DML support – UPDATE/DELETE/MERGE

• Enforced schema and schema evolution

• Identity columns
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Dimension Customer

PK : integer

Customer Name : string

Customer City : string

Fact Invoice

FK Customer : integer

Invoice Number: integer

Amount: float



Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions
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PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels True 20-03-2022 31-12-2999 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

Current 
customer 
table



Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions
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PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels True 20-03-2022 31-12-2999 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

Current 
customer 
table

New 
updates

Customer_id Customer_city Hashed_key

1A Antwerp hash3



Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions
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PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels True 20-03-2022 31-12-2999 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

Customer_id Customer_city Hashed_key

1A Antwerp hash3

PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels False 20-03-2022 29-06-2022 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

3 1A Antwerp True 30-06-2022 31-12-2999 hash3

Current 
customer 
table

New 
updates

Updated 
Customer
table



Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions
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currentRecords = updates \
.alias(“updates”) \
.join(current_customer_table.alias(“current_customer_table”), “Customer_id”) \
.where(current_customer_table.is_current=’true’ and 
current_customer_table.hashed_key <> updates.hashed_key”)

newUpdates= (
currentRecords
.selectExpr(“NULL as Customer_id”, “updates.*”)
.union(updates.selectExpr(“Customer_id”, “*”))
)
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Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions
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deltaTable

.alias(“current_customer_table")

.merge(

newUpdates.alias("updates"),

"current_customer_table.Customer_id = updates.Customer_id"

)

.whenMatchedUpdate(

set={ "current_customer_table.end_date" : current_date(), is_current: False }

).whenNotMatchedInsert(set = {all columns to updates.values, is_current to True})

.execute()
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Data warehouse principals in Lakehouse
Surrogate keys

• Find the max surrogate key in the table

• Use monotonically_increasing_id()

How we used to do it
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• Use delta built-in functionality 
“IDENTITY”

How we can do it now

df = df.withColumn(“PK”, maxPk + 
monotonically_increasing_id() )

CREATE TABLE customer

( PK int GENERATED ALWAYS AS IDENTITY 
(START WITH 0 INCREMENT BY 1),

Customer_id string

)



Data warehouse principals in Lakehouse
Foreign keys lookup

• User input is relationship between fact 
and dimension tables

• Automated lookup of foreign keys for 
dimensions (SCD1, SCD2, role playing)

• Uses range join optimization for SCD 
Type 2 dimensions
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Dimension Customer

PK : int

BK_Customer_id: int

Customer Name : 
string

Customer City : 
string

A_HASHED_KEY_BK: 
string

Fact Invoice

FK Customer : int

BK_Invoice_Number: 
int

Amount: float

A_HASHED_KEY_BK_CU
STOMER: string



Automate DWH development

21

Read bronze 
data

User input to 
build queries 

for dimensions

Stage to 
silver layer

Promote to 
gold

Dimensions flow



Automate DWH development
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Read bronze 
data

Read bronze 
data

User input to 
build queries 

for dimensions

User input to 
build queries 

for facts

Stage to 
silver layer

Stage to 
silver layer

Promote to 
gold

User input to 
define 

relationships 
between facts 

and dimensions

Promote to 
gold

Dimensions flow

Facts flow



Automate DWH development
Dimensions flow
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Read bronze 
data

User input to 
build queries 

for dimensions

Stage to 
silver layer

Promote to 
gold

table increm
ental

customer No

invoices Yes

• Dynamically read 
data from bronze

• Create queries to 
define dimensions 
using business 
logic

e.g.

SELECT 
Id as BK_customer_id,
Name as customer_name,
City as customer_city
FROM customer

Dynamically
• Create hashed key
• Enforce schema
• Write to silver
• Check if some DWH 

principals are 
applied

• Data quality 
checks

• Create surrogate 
keys

• Merge delta table 
to gold



Automate DWH development
Facts flow

24

table incr
emen
tal

customer No

invoices Yes

• Dynamically 
read data from 
bronze

• Create queries 
to define facts 
using business 
logic

e.g.

SELECT 
Invoice_number as 
BK_invoice_number,
Amount 
FROM invoices

Dynamically
• Create hashed 

key
• Enforce schema
• Write to silver
• Check if some 

DWH principals 
are applied

• Data quality 
checks

• Lookup foreign 
keys

• Merge delta 
table to gold

Read bronze 
data

User input to 
build queries 

for facts

Stage to 
silver layer

User input to 
define 

relationships 
between facts 

and dimensions

Promote to 
gold

• Define 
relations 
between facts 
and dimensions

e.g.

factsLink = 
[
{“F_INVOICES”: 

[“D_CUSTOMERS”]
}
]



DataOps for enabling BI in a Lakehouse
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• Read raw data

• Build business logic 
into fact and 
dimension tables

• Stage data in silver 
layer as delta lake

• Creation of surrogate 
keys

• Build relationships -
lookup of foreign keys

• Upsert into gold layer 
delta lake



DataOps for enabling BI in a Lakehouse
Testing framework
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Unit tests 
Integration tests



DataOps for enabling BI in a Lakehouse
Package framework
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Package code Deploy in private 
pypi repo in Azure 
DevOps Artifacts



Bridge between BI and modern-day use 
cases
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Real-time 
analytics

Data science 
and machine 
learning

BI and SQL 
analytics

DDDelta engine



Conclusion
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• Lakehouse solves some of the shortcomings of data 
lakes and data warehouses

• Data warehousing development can be easily 
modernized and automated in a Lakehouse

• One architecture to cover the needs of data 
scientists, data engineers, BI engineers
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Thank you
Ivana Pejeva & Yoshi Coppens


