
How Spark and Delta Can Help With
Automating a DWH Development

1

Ivana Pejeva
Cloud Solution Architect, Microsoft

Enabling BI in a
Lakehouse Environment

Yoshi Coppens
Data Engineer, element61

2

Agenda

• Evolution to a Lakehouse

• Why automating DWH development?

• Spark framework for automating

DWH development

• DataOps for BI

• Bridge between BI and modern

use cases

Evolution of data architectures

3

• Centralizes data from
different sources

• Structured data

• Limitation with the increase in
variety of data

…from data warehouses to data lakes…

• Support for both structured
and unstructured data

• Low-cost storage
• Open file formats

Challenges with Data Lakes

4

Append new data and
consistent reads on data

Modifying existing
data on data lakes

Reliability and data quality Real-time support

Data versioning

Metadata management

Performance issues

Data Lakehouse design

• Leverage data from data lakes

• Solving reliability and quality challenges in data lakes

• Optimized performance

• Support for machine learning and BI together

• Improved governance and security

• Extended file, tool and language support

5

Source: Databricks

Why running DWH workloads in a Lakehouse

6

.json

Data Engineer

Data Scientist
BI Engineer

BI ML

Streaming

• Lookup of foreign keys to
dimensions

• Lookup to both SCD1
and SCD2 type of
dimensions

• Write merge queries to
“upsert” data to gold

Creation of facts

• Create incremental integer
primary keys

• Create dummy primary keys
for missing records

• Auto increment keys for new
records

• Write merge queries to
“upsert” data to gold

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake
from bronze and
creating dataframes and
views with schema in Spark

Reading bronze tables

7

• Lookup of foreign keys to
dimensions

• Lookup to both SCD1
and SCD2 type of
dimensions

• Write merge queries to
“upsert” data to gold

Creation of facts

• Create incremental integer
primary keys

• Create dummy primary keys
for missing records

• Auto increment keys for new
records

• Write merge queries to
“upsert” data to gold

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake
from bronze and
creating dataframes and
views with schema in Spark

Reading bronze tables

8

Hundreds of
source tables

• Lookup of foreign keys to
dimensions

• Lookup to both SCD1
and SCD2 type of
dimensions

• Write merge queries to
“upsert” data to gold

Creation of facts

• Create incremental integer
primary keys

• Create dummy primary keys
for missing records

• Auto increment keys for
existing records

• Write merge queries to
“upsert” data

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake
from bronze and
creating dataframes and
views with schema in Spark

Reading bronze tables

9

Many
dimension
tables

Hundreds of
source tables

• Lookup of foreign keys to
dimensions based on config
file

• Lookup to both SCD1
and SCD2 type of
dimensions

• Write merge queries to
“upsert” data to gold

Creation of facts

• Create incremental integer
primary keys

• Create dummy primary keys
for missing records

• Auto increment keys for
existing records

• Write merge queries to
“upsert” data

Creation of dimensions

Why we want to automate DWH development

• Reading data from data lake
from bronze and
creating dataframes and
views with schema in Spark

Reading bronze tables

10

Many
dimension
tables

Many
fact tables

Hundreds of
source tables

Data modelling in a Lakehouse
Modernize and automate DWH development

11

• Read raw data

• Build business logic
into fact and
dimension tables

• Stage data in silver
layer as delta lake

• Creation of surrogate
keys

• Build relationships -
lookup of foreign keys

• Upsert into gold layer
delta lake

How can we implement DWH principles on
data lakes
Delta Lake brings ACID transactions to Data lake

• Atomicity: every transaction is logged in
transaction log

• Consistency: serializable isolation on write

• Isolation: concurrent writes

• Durability: available in case of failures

12

Spark framework for DWH development
Delta Lake for high data quality

• Transaction log to guarantee atomicity

• DML support – UPDATE/DELETE/MERGE

• Enforced schema and schema evolution

• Identity columns

13

Dimension Customer

PK : integer

Customer Name : string

Customer City : string

Fact Invoice

FK Customer : integer

Invoice Number: integer

Amount: float

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

14

PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels True 20-03-2022 31-12-2999 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

Current
customer
table

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

15

PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels True 20-03-2022 31-12-2999 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

Current
customer
table

New
updates

Customer_id Customer_city Hashed_key

1A Antwerp hash3

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

16

PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels True 20-03-2022 31-12-2999 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

Customer_id Customer_city Hashed_key

1A Antwerp hash3

PK Customer_id Customer_city Is_current Start_date End_date Hashed_key

1 1A Brussels False 20-03-2022 29-06-2022 hash1

2 2B Antwerp True 10-01-2021 31-12-2999 hash2

3 1A Antwerp True 30-06-2022 31-12-2999 hash3

Current
customer
table

New
updates

Updated
Customer
table

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

17

currentRecords = updates \
.alias(“updates”) \
.join(current_customer_table.alias(“current_customer_table”), “Customer_id”) \
.where(current_customer_table.is_current=’true’ and
current_customer_table.hashed_key <> updates.hashed_key”)

newUpdates= (
currentRecords
.selectExpr(“NULL as Customer_id”, “updates.*”)
.union(updates.selectExpr(“Customer_id”, “*”))
)

1

2

3

4

5

6

7

8

9

10

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

18

deltaTable

.alias(“current_customer_table")

.merge(

newUpdates.alias("updates"),

"current_customer_table.Customer_id = updates.Customer_id"

)

.whenMatchedUpdate(

set={ "current_customer_table.end_date" : current_date(), is_current: False }

).whenNotMatchedInsert(set = {all columns to updates.values, is_current to True})

.execute()

1

2

3

4

5

6

7

8

9

10

Data warehouse principals in Lakehouse
Surrogate keys

• Find the max surrogate key in the table

• Use monotonically_increasing_id()

How we used to do it

19

• Use delta built-in functionality
“IDENTITY”

How we can do it now

df = df.withColumn(“PK”, maxPk +
monotonically_increasing_id())

CREATE TABLE customer

(PK int GENERATED ALWAYS AS IDENTITY
(START WITH 0 INCREMENT BY 1),

Customer_id string

)

Data warehouse principals in Lakehouse
Foreign keys lookup

• User input is relationship between fact
and dimension tables

• Automated lookup of foreign keys for
dimensions (SCD1, SCD2, role playing)

• Uses range join optimization for SCD
Type 2 dimensions

20

Dimension Customer

PK : int

BK_Customer_id: int

Customer Name :
string

Customer City :
string

A_HASHED_KEY_BK:
string

Fact Invoice

FK Customer : int

BK_Invoice_Number:
int

Amount: float

A_HASHED_KEY_BK_CU
STOMER: string

Automate DWH development

21

Read bronze
data

User input to
build queries

for dimensions

Stage to
silver layer

Promote to
gold

Dimensions flow

Automate DWH development

22

Read bronze
data

Read bronze
data

User input to
build queries

for dimensions

User input to
build queries

for facts

Stage to
silver layer

Stage to
silver layer

Promote to
gold

User input to
define

relationships
between facts

and dimensions

Promote to
gold

Dimensions flow

Facts flow

Automate DWH development
Dimensions flow

23

Read bronze
data

User input to
build queries

for dimensions

Stage to
silver layer

Promote to
gold

table increm
ental

customer No

invoices Yes

• Dynamically read
data from bronze

• Create queries to
define dimensions
using business
logic

e.g.

SELECT
Id as BK_customer_id,
Name as customer_name,
City as customer_city
FROM customer

Dynamically
• Create hashed key
• Enforce schema
• Write to silver
• Check if some DWH

principals are
applied

• Data quality
checks

• Create surrogate
keys

• Merge delta table
to gold

Automate DWH development
Facts flow

24

table incr
emen
tal

customer No

invoices Yes

• Dynamically
read data from
bronze

• Create queries
to define facts
using business
logic

e.g.

SELECT
Invoice_number as
BK_invoice_number,
Amount
FROM invoices

Dynamically
• Create hashed

key
• Enforce schema
• Write to silver
• Check if some

DWH principals
are applied

• Data quality
checks

• Lookup foreign
keys

• Merge delta
table to gold

Read bronze
data

User input to
build queries

for facts

Stage to
silver layer

User input to
define

relationships
between facts

and dimensions

Promote to
gold

• Define
relations
between facts
and dimensions

e.g.

factsLink =
[
{“F_INVOICES”:

[“D_CUSTOMERS”]
}
]

DataOps for enabling BI in a Lakehouse

25

• Read raw data

• Build business logic
into fact and
dimension tables

• Stage data in silver
layer as delta lake

• Creation of surrogate
keys

• Build relationships -
lookup of foreign keys

• Upsert into gold layer
delta lake

DataOps for enabling BI in a Lakehouse
Testing framework

26

Unit tests
Integration tests

DataOps for enabling BI in a Lakehouse
Package framework

27

Package code Deploy in private
pypi repo in Azure
DevOps Artifacts

Bridge between BI and modern-day use
cases

28

Real-time
analytics

Data science
and machine
learning

BI and SQL
analytics

DDDelta engine

Conclusion

29

• Lakehouse solves some of the shortcomings of data
lakes and data warehouses

• Data warehousing development can be easily
modernized and automated in a Lakehouse

• One architecture to cover the needs of data
scientists, data engineers, BI engineers

30

Thank you
Ivana Pejeva & Yoshi Coppens

