DATA+AI

SUMMIT 2022

Enabling Bl in a

Lakehouse Environment

How Spark and Delta Can Help With
Automating a DWH Development

o

€ Yoshi Coppens

¥ c1oud Solution Architect, Microsoft W~ Data Engineer, element6l

ORGANIZED BY & databricks L1 N Ivana PeJ Vel

Agenda

Evolution to a Lakehouse

Why automating DWH development?
Spark framework for automating
DWH development

DataOps for BI

Bridge between BI and modern

use Cases

DATA+AI
SUMMIT 2022

Evolution of data architectures

P
000
- W™
..from data warehouses to data lakes...
* Centralizes data from * Support for both structured
different sources and unstructured data
* Structured data * Low-cost storage
.)
° Limitation with the increase in Open file formats
variety of data
\

DATA+AI

SUMMIT 2022

Challenges with Data Lakes

Performance issues
Append new data and =l

consistent reads on data « []

v Metadata management
:
Modifying existing
data on data lakes =
G Data versioning
D)]
Reliability and data quality %‘ @ Real-time support
\

DATA+AI

SUMMIT 2022

Data Lakehouse design

#
* Leverage data from data lakes
&« B @ ¢
. . ers . . d
- Solving reliability and quality challenges in data lakes & @ Data Machine
Bl Reports seience Learning
. t t t t
® Optlmlzed performance ‘ SOLAPIs J Declarative)
DataFrame APIs
» Support for machine learning and Bl together { Metadata APi)
I l l l Transactionmgrﬁt ‘
. A'Q(JV.G-FHEJHCQ‘VEFS\OPIHQ‘
* Improved governance and security auxiliary data structures
Kl e 0 ’Datafiwesmupem
- Extended file, tool and language support —e format(e.g Peraue)
Eo® 0 B
Structured, Semi-structured & Unstructured Data
_ Source: Databricks J
DATAAI 5

SUMMIT 2022

Why running DWH workloads in a Lakehouse

-
_
. AUTOMATION -
i : A \ R N EScala Bmmmmmm Data Engineer
‘0 Spoark™ SQL
%sﬁsﬂ»@ .— -l'.. I é
Streaming
A N
/1% (D)
. Data Scientist
Bl Engineer
o

DATA+AI 6
SUMMIT 2022

Why we want to automate DWH development

4 -

Reading bronze tables Creation of dimensions Creation of facts

-

Reading data from data lake
from bronze and

creating dataframes and
views with schema in Spark

Create incremental integer
primary keys

Create dummy primary keys
for missing records

Auto increment keys for new
records

Write merge queries to
“upsert” data to gold

* Lookup of foreign keys to
dimensions

* Lookup to both SCDI1

and SCD2 type of
dimensions

* Write merge queries to
“upsert” data to gold

DATA+AI

SUMMIT 2022

Why we want to automate DWH development

a

-

Reading bronze tables

Hundreds of
source tables

Creation of dimensions

* Create incremental integer
primary keys

Create dummy primary keys
for missing records

Auto increment keys for new
records

Write merge queries to
“upsert” data to gold

Creation of facts

* Lookup of foreign keys to
dimensions

Lookup to both SCD1

and SCD2 type of
dimensions

* Write merge queries to
“upsert” data to gold

DATA+AI

SUMMIT 2022

Why we want to automate DWH development

- r
Reading bronze tables Creation of dimensions Creation of facts

* Lookup of foreign keys to
dimensions

Lookup to both SCD1
Ma ny and SCD2 type of

dimension dimensions

tables * Write merge queries to
“upsert” data to gold

Hundreds of
source tables

-

DATA+AI
SUMMIT 2022

Why we want to automate DWH development

a

-

Reading bronze tables

Hundreds of
source tables

-

Creation of dimensions

Many
dimension
tables

P

Creation of facts

Many
fact tables

DATA+AI

Data modelling in a Lakehouse

Modernize and automate DWH development

a
Azure IS
Services Azure
NoSQL a o~ g Silver e Gold
Ei_, > Spark’ Spark’
Databases @ — — & Azure Databricks A L & Azure Databricks ...é.. B
1 [P ————
Files | mmm l Raw Data ° Read raw data Denormalized ° Creation of surrogate Data W:;ehouse Hub
Overwrite keys - e;ge '
i H . . Schema Bound ime Trave
A s {{’ ® Build business logic rsiessmsimis s
Apps T¥ into fact and © Build relationships -
dimension tables lookup of foreign keys
¢ Stage data in silver ¢ Upsert into gold layer
layer as delta lake delta lake
o
DATA+AI

SUMMIT 2022

|l

How can we implement DWH principles on

data lakes

Delta Lake brings ACID transactions to Data lake

-
HAS ARRIVED

tomicity: every transaction is logged in
transaction log

onsistency: serializable isolation on write
solation: concurrent writes

urability: available in case of failures

Spark framework for DWH development
Delta Lake for high data quality

o

Transaction log to guarantee atomicity
DML support — UPDATE/DELETE/MERGE
Enforced schema and schema evolution

|ldentity columns

PK : integer
Customer Name : string

Customer City : string

Fact Invoice
FK Customer : integer
Invoice Number: integer

Amount: float

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

Brussels 20-03-2022 @ 31-12-2999 | hash1
Antwerp 10-01-2021 31-12-2999 | hash2

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

Brussels 20-03-2022 @ 31-12-2999 | hash1
Antwerp 10-01-2021 31-12-2999 | hash2

Antwerp

Data warehouse principals in Lakehouse
SCD Type 1 and 2 Dimensions

Brussels 20-03-2022 @ 31-12-2999 | hash1
Antwerp 10-01-2021 31-12-2999 | hash2

Antwerp

Brussels 20-03-2022 29-06-2022 hash1
Antwerp 10-01-2021 31-12-2999 hash2
Antwerp 30-06-2022 31-12-2999 hash3

Data warehouse principals in Lakehouse

currentRecords = updates \
.alias(“updates”) \
.join(current_customer_table.alias(”current_customer_table”), *“Customer_id”) \
.where(current_customer_table.is_current='true’ and
current_customer_table.hashed_key <> updates.hashed_key")

newUpdates= (

currentRecords
.selectExpr(“NULL as Customer_id”, "updates.*")
.union(updates.selectExpr(“Customer_id"”, "“*"))

)

DATAAI 7

SUMMIT 2022

Data warehouse principals in Lakehouse

deltaTable
.alias("”current_customer_table")
.merge(
newUpdates.alias("updates"),

"current_customer_table.Customer_id = updates.Customer_id"

)
.whenMatchedUpdate(

set={ "current_customer_table.end_date" : current_date(), is_current: False }

) .whenNotMatchedInsert(set = {all columns to updates.values, is_current to True})

.execute()

DATA+AI

SUMMIT 2022 18

Data warehouse principals in Lakehouse

Surrogate keys

o

How we used to do it
« Find the max surrogate key in the table

« Use monotonically_increasing_id()

df = df.withColumn(“PK”, maxPk +
monotonically_increasing_id())

-

How we can do it now

« Use delta built-in functionality
“IDENTITY"

CREATE TABLE customer

(PK int GENERATED ALWAYS AS IDENTITY
(START WITH O INCREMENT BY 1),

Customer_id string

)

DATA+AI

SUMMIT 2022

Data warehouse principals in Lakehouse

Foreign keys lookup

o

PK : int
BK_Customer_id: int
Customer Name :
string

Customer City :
string

A_HASHED_KEY_BK:
string

-

Fact Invoice
FK Customer : int

BK_Invoice_Number:
int
Amount: float

A_HASHED_KEY_BK_CU
STOMER: string

User input is relationship between fact
and dimension tables

Automated lookup of foreign keys for
dimensions (SCD1, SCD2, role playing)

Uses range join optimization for SCD
Type 2 dimensions

DATA+AI

SUMMIT 2022

Automate DWH development

Read bronze
data

Stage to
silver layer

Promote to
gold

Dimensions flow

Automate DWH development

Read bronze
data

Read bronze
data

Stage to Promote to
silver layer gold

Dimensions flow

User input to

Stage to define Promote to

o relationships Id
silver layer between facts -

and dimensions

Facts flow

Automate DWH development

Dimensions flow

o

Stage to Promote to
silver layer gold

Dynamically read Create queries to Dynamically Create surrogate

data from bronze

table increm
ental

customer No

invoices Yes

define dimensions
using business
logic

e.g.

SELECT

Id as BK_customer_1id,
Name as customer_name,
City as customer_city
FROM customer

Create hashed key
Enforce schema
Write to silver
Check if some DWH
principals are
applied

Data quality
checks

keys
Merge delta table
to gold

Automate DWH development

Facts flow

o

Read bronze
data

Dynamically
read data from
bronze

table

customer

invoices

Create queries

to define facts
using business

logic

e.g.

SELECT
Invoice_number as
BK_invoice_number,
Amount

FROM invoices

Stage to
silver layer

Dynamically
Create hashed
key
Enforce schema
Write to silver
Check if some
DWH principals
are applied
Data quality
checks

User input to
define
relationships
between facts

and dimensions

Define
relations
between facts
and dimensions

e.g.

factsLink =

[
“F_INVOICES”:

[“D_CUSTOMERS"]

{
}
]

Promote to
gold

Lookup foreign
keys

Merge delta
table to gold

DataOps for enabling Bl in a Lakehouse

a
Bronze "\Z Silver ‘I\Z Gold
) - l Spark” Spark”
' ® Readraw data [=] ¢ Creation of surrogate
Raw Data Denormalized Data Warehouse Hub
. . . ; keys Merge
® Build business logic Overwrite s ol
. Schema Bound ° . . . e, LT
into fact and Ferarracal e Build relationships -
dimension tables lookup of foreign keys
¢ Stage datain silver ¢ Upsert into gold layer
layer as delta lake delta lake
O Azure DevOps
Azure Azure Azure Azure
Repos Pipelines Test Plans Artifacts
&
DATA+AI

SUMMIT 2022

DataOps for enabling Bl in a Lakehouse

Testing framework

100% Functions 3/3

b por kforthe previous b

Statements Branches Functions Lines

Unit tests 100% 100% | 0/0 100% = 3/3 | 100% | 7/7
Integration tests

l:j Azure DevOps

DataOps for enabling Bl in a Lakehouse

Package framework

Package code

Deploy in private
pypl repo in Azure
DevOps Artifacts

l:j Azure DevOps

Bridge between Bl and modern-day use

CcasSes

-

S

Real-time
analytics

Data science
and machine
learning

I ©

Bl and SQL
analytics

rrrrr

Delta engine

DATA+AI
SUMMIT 2022

28

Conclusion

« Lakehouse solves some of the shortcomings of data
lakes and data warehouses

- Data warehousing development can be easily
modernized and automated in a Lakehouse

« One architecture to cover the needs of data
scientists, data engineers, Bl engineers

DATAAI 29

SUMMIT 2022

DATA+AI

SUMMIT 2022

