
1

Brian Femiano
Senior Data Engineer. Ads Platform @ Apple

Elixir: The wickedly awesome
batch and stream
processing language you
should have in your toolbox

What is Elixir?
• Dynamic functional programming language.
• Erlang virtual machine (BEAM) compatible bytecode.
• Leverage lightweight Erlang processes for distributed

computing.
• Tooling ecosystem is about as dev-friendly as it gets.
• Erlang can be a difficult onboard ramp for n00bs.
• Elixir is the exact opposite but still gets to use the Erlang VM.

Fantastic community.

2

Why Elixir for data engineering?
• Actor model helps facilitate scalable distributed

communication.
• Immutability on data in memory.
• Pattern matching for analytics is very useful.
• Strong support for lazy evaluation over data structures.
• Agent/GenServer modules make managing state a breeze.
• Error handling/Fault tolerance is both robust and graceful.
• Erlang VM is extremely battle-tested and hard to crash.

Great for constant-running applications.

3

Services architecture
● Services configured as Erlang clusters with N nodes.
● Nodes deployed on containers.
● Nodes running the service will spawn Erlang processes.
● Processes can easily communicate across container boundaries.
● Caravan: library to help Erlang/Elixir processes communicate in a container

setting with Consul.
● Airflow tasks that sends HTTP POST to our processes.
● Configure Elixir workloads as Airflow DAG tasks.
● Airflow sensor polls processes every until either:

A) Success response

B) Failure response

C) Timeout.
4

Services architecture

5

ScheduledJob framework written in Elixir
• Handles coordination of jobs across the Erlang nodes in a service cluster,

rerunning failed jobs and persisting of status logs.

• Does not handle triggering jobs or inter-job dependencies. Designed to be
triggered by an HTTP POST from an Airflow operator.

• Unchecked errors automatically flag the scheduled job as failed.

• Coordinator service interacts with different LocalRunners across the Erlang
cluster as a locking service to ensure only one concurrent instance of a job is
spawned and running.

6

Steps of a scheduled job workflow

7

Wiring up scheduled job
defmodule Notifications.Jobs do

def job_configs do

%{

ingest_job: %{

retry_policy: %{retries: 2},

default_arguments: [~T[11:00:00]]

}

 }

8

Scheduled jobs in Application start()
def start(_type, _args) do

 # List all child processes to be supervised

 children = [

 {ScheduledJob,

 [

 job_providers: [[module: Notifications.Jobs, config_provider:

:job_configs]],

 repo: Notifications.Repo # Ecto database operations module.

]}

]

 Supervisor.start_link(children, opts)

end
9

Case study: Notification view analytics
• We want to know which notifications are actually get viewed.
• Information is collected in raw logs.
• We want this information structured and stored in our notifications microservice

database for fast retrieval by the service API layer.
• Why couple the ingest code directly with the microservice?

1. The service API layer contains quite a bit of code we’d like to reuse for ingest
transformation.

2. We’d like to keep write access to the database restricted to just the service.

10

Case study: Notification view analytics

11

Case study: Notification analysis
 def run(conn, scheduled_at) do

 with_timing(#telemetry helper method. Stopwatch to measure how long the first function takes to execute.

 fn -> # inline function that does the iterative chunk persistence.

 day = get_day_from_schedule(scheduled_at)

 unless upstream_ready?(day) do

 raise "Upstream data is not available yet"

 end

 objs = Storage.list_objects_with_prefix(conn, "data_directory", "day=#{Date.to_string(day)}")

 Storage.stream_objects_data(conn, objs)

 |> Stream.chunk_every(1000)

 |> Stream.map(fn lines -> parse_lines_batch(lines, day) end)

 |> Enum.map(&write_batch_to_db/1)

 end,

 &capture_telemetry/2 #callback to measure output metrics

)

12

Stream processing
Notifications service also needs listens to several Kafka topics.

KafkaEx: Elixir client with support for Kafka 0.8+
https://hexdocs.pm/kafka_ex/readme.html

13

Setting up Kafka Ex
1. Add mix dependency to build.

2. Setup supervisor module to listen to consumers.

3. Wire supervisor into Application supervision tree.

4. Define different consumer_impl implementations.

14

Supervisor module to listen on consumers
 def start_link(args) do

 Supervisor.start_link(__MODULE__, args, name: __MODULE__)

 end

 @impl true

 def init(_args) do

 Supervisor.init(build_child_specs(Application.get_env(:app_name, :consumers),

 strategy: :one_for_one)

 end

 def build_child_specs (configs) when is_list(configs) do

 configs

 |> Enum.map(&validate_config!/1)

 |> Enum.map(&build_child_spec/1)

 end

15

Supervisor module to listen on consumers
 defp build_child_spec(config) when is_list(config) do

 consumer_group_args = [

 # the implementation of KafkaEx.GenConsumer - this module does all the work

 Keyword.fetch!(config, :consumer_impl),

 Keyword.fetch!(config, :consumer_group_name),

 [Keyword.fetch!(config, :topic_name)],

 [

 uris: Config.kafka_uris(),

 auto_offset_reset: :earliest

]

]

 %{

 id: supervisor_name,

 start: {KafkaEx.ConsumerGroup, :start_link, consumer_group_args},

 type: :supervisor

 }

 end

16

GenServer consumer
 defmodule CreatorNotifications.CuratedProgram.Consumer do

 use KafkaEx.GenConsumer

 alias KafkaEx.Protocol.Fetch.Message

 @impl true

 @spec handle_message_set([Message.t()], term) :: {:async_commit, term}

 def handle_message_set(messages, consumer_state) do

 messages

 |> Enum.map(&decode_avro_message(&1.value))

 |> ingest_messages()

 {:async_commit, consumer_state}

 end

 end
17

18

Brian Femiano
Ads Platform @ Apple

Thank you

References

The Erlang programing language: https://www.erlang.org/

The Elixir programming language: https://elixir-lang.org/

Elixir libs: KafkaEx:
https://hexdocs.pm/kafka_ex/readme.html#usage-examples

Caravan: https://hexdocs.pm/caravan/Caravan.html

Consul: https://www.consul.io/

19

https://www.erlang.org/
https://elixir-lang.org/
https://hexdocs.pm/kafka_ex/readme.html#usage-examples
https://hexdocs.pm/caravan/Caravan.html
https://www.consul.io/

