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Elixir: The wickedly awesome 
batch and stream 
processing language you 
should have in your toolbox



What is Elixir?
• Dynamic functional programming language. 
• Erlang virtual machine (BEAM) compatible bytecode. 
• Leverage lightweight Erlang processes for distributed 

computing. 
• Tooling ecosystem is about as dev-friendly as it gets. 
• Erlang can be a difficult onboard ramp for n00bs. 
• Elixir is the exact opposite but still gets to use the Erlang VM. 

Fantastic community. 
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Why Elixir for data engineering?
• Actor model helps facilitate scalable distributed 

communication. 
• Immutability on data in memory.
• Pattern matching for analytics is very useful. 
• Strong support for lazy evaluation over data structures. 
• Agent/GenServer modules make managing state a breeze. 
• Error handling/Fault tolerance is both robust and graceful. 
• Erlang VM is extremely battle-tested and hard to crash. 

Great for constant-running applications. 
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Services architecture
● Services configured as Erlang clusters with N nodes. 
● Nodes deployed on containers.
● Nodes running the service will spawn Erlang processes. 
● Processes can easily communicate across container boundaries. 
● Caravan: library to help Erlang/Elixir processes communicate in a container 

setting with Consul. 
● Airflow tasks that sends HTTP POST to our processes. 
● Configure Elixir workloads as Airflow DAG tasks.
● Airflow sensor polls processes every until either: 

A) Success response 

B) Failure response 

C) Timeout. 
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Services architecture
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ScheduledJob framework written in Elixir
• Handles coordination of jobs across the Erlang nodes in a service cluster, 

rerunning failed jobs and persisting of status logs. 

• Does not handle triggering jobs or inter-job dependencies. Designed to be 
triggered by an HTTP POST from an Airflow operator. 

• Unchecked errors automatically flag the scheduled job as failed.

• Coordinator service interacts with different LocalRunners across the Erlang 
cluster as a locking service to ensure only one concurrent instance of a job is 
spawned and running. 
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Steps of a scheduled job workflow
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Wiring up scheduled job
defmodule Notifications.Jobs do 

def job_configs do 

%{

ingest_job: %{

retry_policy: %{retries: 2},

default_arguments: [~T[11:00:00]]

}

   }
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Scheduled jobs in Application start()
def start(_type, _args) do

  # List all child processes to be supervised

  children = [

    {ScheduledJob,

  [

        job_providers: [[module: Notifications.Jobs, config_provider:

:job_configs]],

    repo: Notifications.Repo # Ecto database operations module.

     ]}

  ]

  Supervisor.start_link(children, opts)

end
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Case study: Notification view analytics
• We want to know which notifications are actually get viewed.
• Information is collected in raw logs. 
• We want this information structured and stored in our notifications microservice 

database for fast retrieval by the service API layer. 
• Why couple the ingest code directly with the microservice? 

1. The service API layer contains quite a bit of code we’d like to reuse for ingest 
transformation. 

2. We’d like to keep write access to the database restricted to just the service.
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Case study: Notification view analytics
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Case study: Notification analysis
 def run(conn, scheduled_at) do

   with_timing( #telemetry helper method. Stopwatch to measure how long the first function takes to execute.

     fn -> # inline function that does the iterative chunk persistence.

        day = get_day_from_schedule(scheduled_at)

        unless upstream_ready?(day) do

          raise "Upstream data is not available yet"

        end

   objs = Storage.list_objects_with_prefix(conn, "data_directory", "day=#{Date.to_string(day)}")

   Storage.stream_objects_data(conn, objs)

     |> Stream.chunk_every(1000)

     |> Stream.map(fn lines -> parse_lines_batch(lines, day) end)

     |> Enum.map(&write_batch_to_db/1)

    end,

    &capture_telemetry/2 #callback to measure output metrics

   )
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Stream processing
Notifications service also needs listens to several Kafka topics. 

KafkaEx: Elixir client with support for Kafka 0.8+ 
https://hexdocs.pm/kafka_ex/readme.html
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Setting up Kafka Ex
1. Add mix dependency to build. 

2. Setup supervisor module to listen to consumers. 

3. Wire supervisor into Application supervision tree. 

4. Define different consumer_impl implementations. 
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Supervisor module to listen on consumers
  def start_link(args) do

   Supervisor.start_link(__MODULE__, args, name: __MODULE__)

  end

 

  @impl true

  def init(_args) do

   Supervisor.init(build_child_specs( Application.get_env(:app_name, :consumers),

   strategy: :one_for_one)

  end

 

  def build_child_specs (configs) when is_list(configs) do

   configs

   |> Enum.map(&validate_config!/1)

   |> Enum.map(&build_child_spec/1)

  end
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Supervisor module to listen on consumers
  defp build_child_spec(config) when is_list(config) do

     consumer_group_args = [

       # the implementation of KafkaEx.GenConsumer - this module does all the work

       Keyword.fetch!(config, :consumer_impl),

       Keyword.fetch!(config, :consumer_group_name),

       [Keyword.fetch!(config, :topic_name)],

       [

         uris: Config.kafka_uris(),

         auto_offset_reset: :earliest

       ]

     ]

     %{

       id: supervisor_name,

       start: {KafkaEx.ConsumerGroup, :start_link, consumer_group_args},

       type: :supervisor

     }

  end
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GenServer consumer
 defmodule CreatorNotifications.CuratedProgram.Consumer do

   use KafkaEx.GenConsumer

   alias KafkaEx.Protocol.Fetch.Message

   @impl true

   @spec handle_message_set([Message.t()], term) :: {:async_commit, term}

   def handle_message_set(messages, consumer_state) do

    messages

    |> Enum.map(&decode_avro_message(&1.value))

    |> ingest_messages()

    {:async_commit, consumer_state}

   end

  end
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References

The Erlang programing language: https://www.erlang.org/ 

The Elixir programming language: https://elixir-lang.org/ 

Elixir libs: KafkaEx: 
https://hexdocs.pm/kafka_ex/readme.html#usage-examples 

Caravan: https://hexdocs.pm/caravan/Caravan.html 

Consul: https://www.consul.io/
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