DATA+AI SUMMIT 2022

Detecting financial crime using an Azure advanced analytics platform and MLOps approach

Lars Haringa, Data Scientist, ABN AMRO Bank

Saman Amini, ML Engineer, ABN AMRO Bank

Outline

Transaction Monitoring with Machine Learning

Lars Haringa

MLOps

Saman Amini

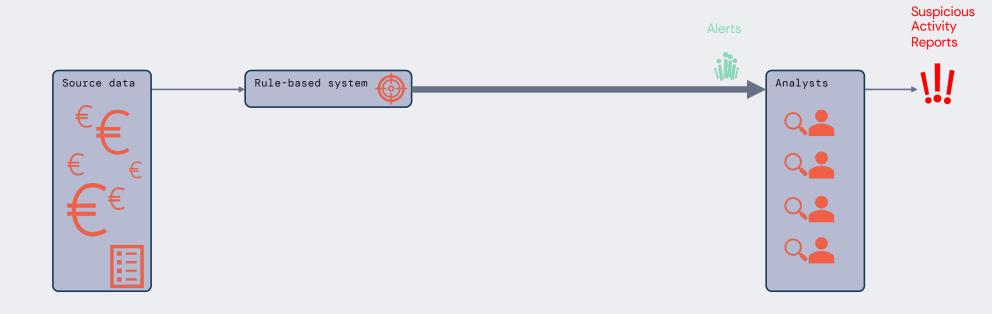


Gatekeepers of the financial system

- 1/4 Systemically Important Banks banks in NL
- Many millions of transactions per day
- Strictly regulated

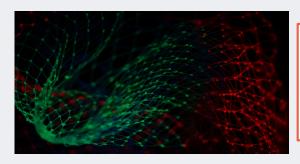
- Legal obligation for Transaction Monitoring (TM) ← profits of organised crime
- Unique position for detecting financial crime (DFC)
- Costly operation

Rule-based TM



From rule-based TM to TMML

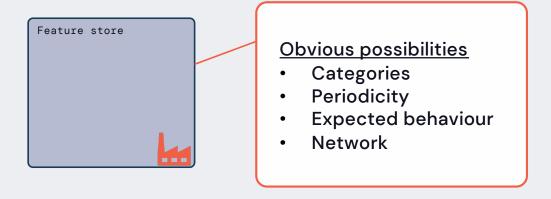
- Hand-built (a priori)
- Simple
- Many false positives
- E.g. if deposit > threshold, investigate



- Data-driven Transaction Monitoring Machine Learning (TMML)
- Complex: 100s simultaneous decisions
- Efficient

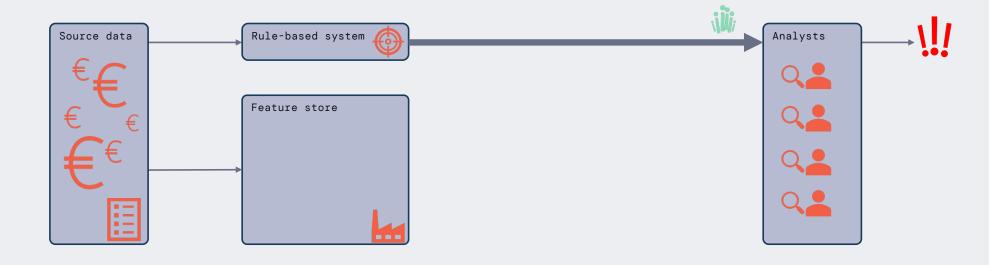
Feature store

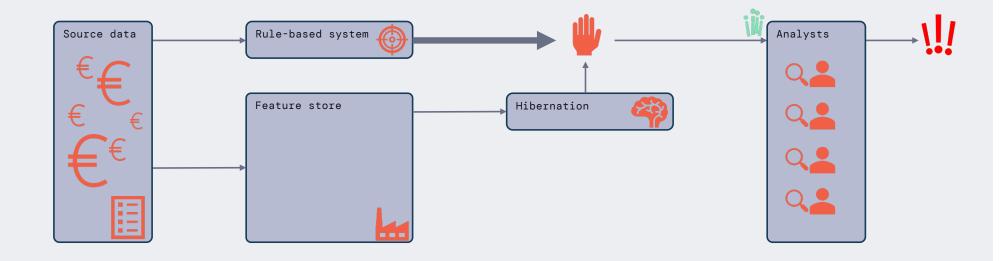
Transaction data is rich (e.g. sensitive)

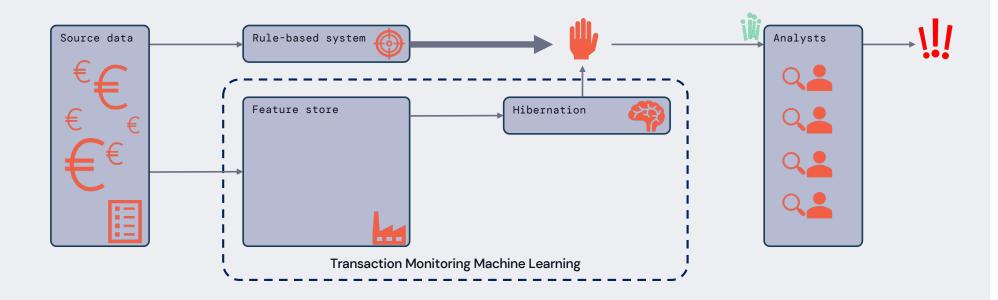


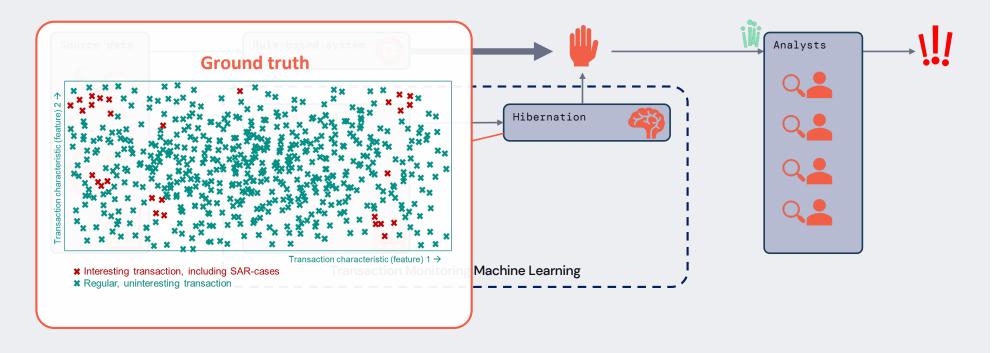
IT to combine and transform various sources continuously

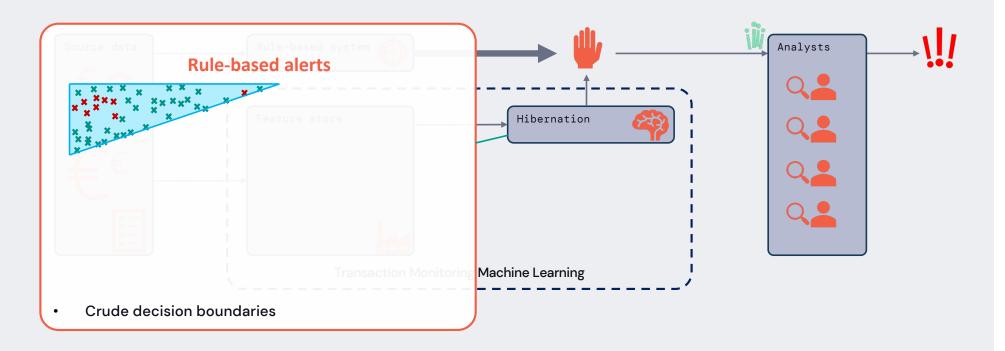
Feature store

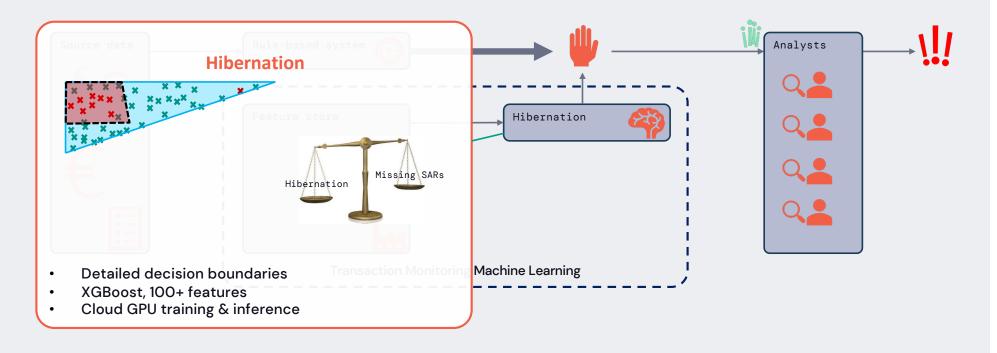


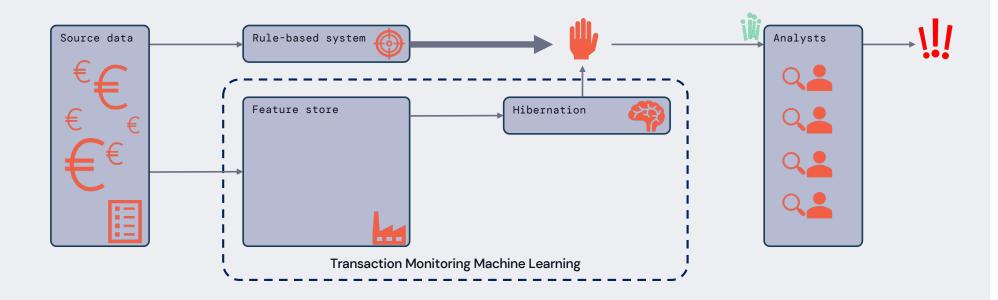




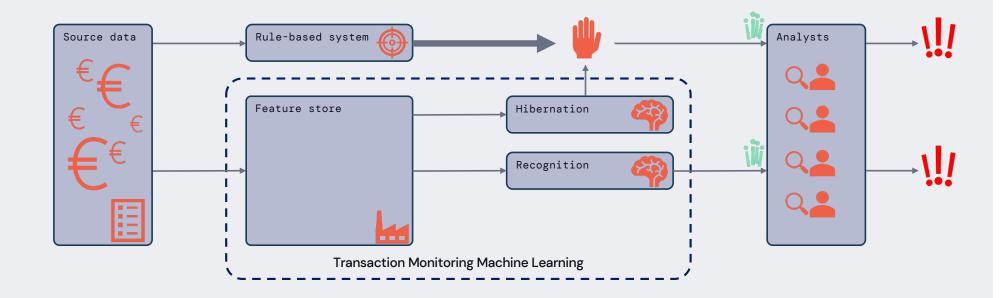




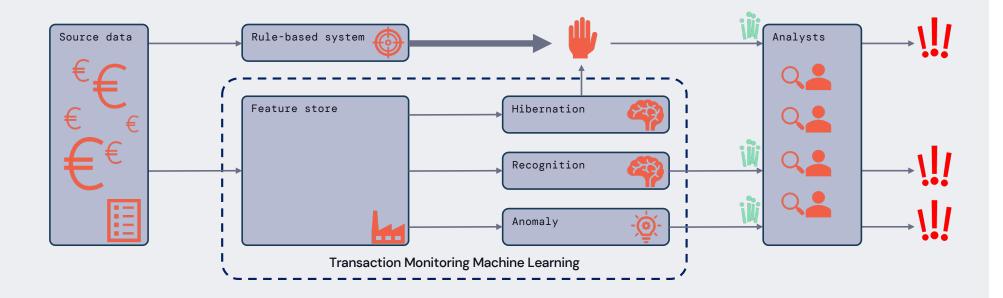




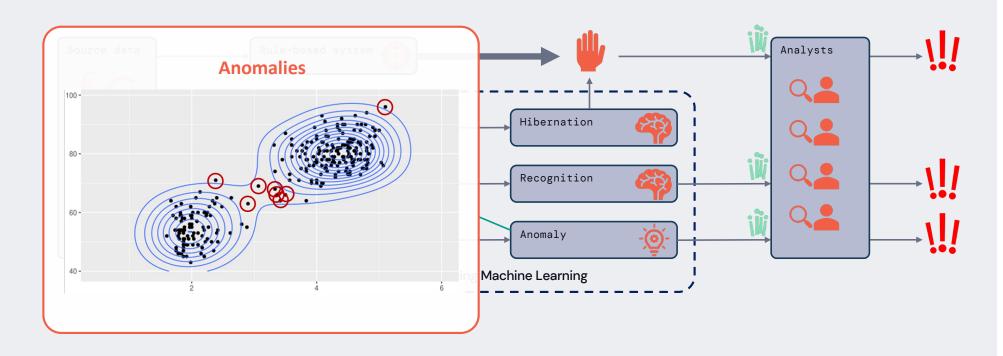
Supervised model – detecting similar cases



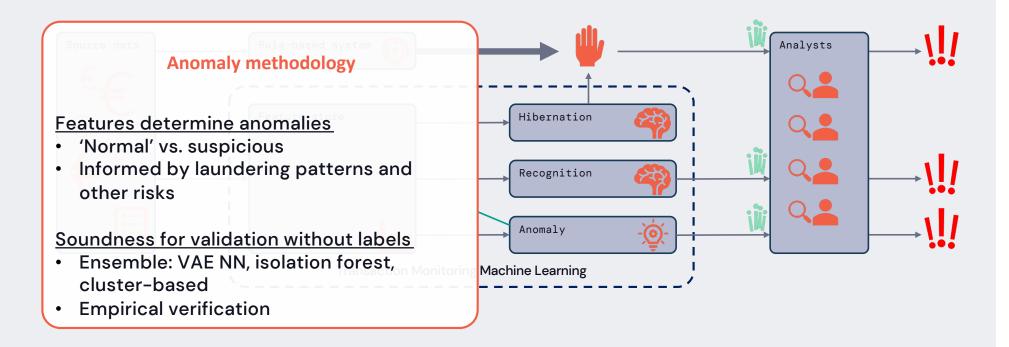
Unsupervised model – anomaly detection



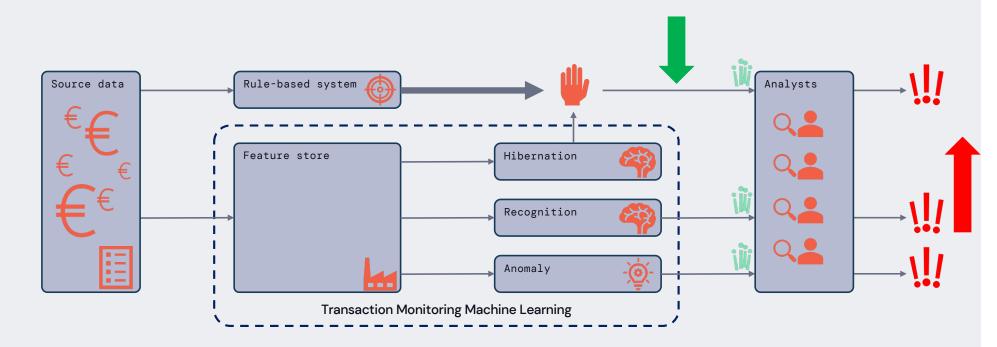
Unsupervised model – anomaly detection



Unsupervised model – anomaly detection



Results



Less false positives, more Suspicious Activity Reports

Results – business value

False positive reduction: refocus work

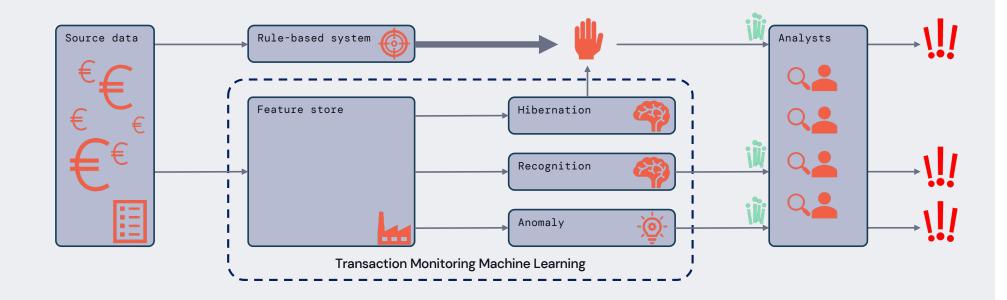
- Analyst capacity is needed elsewhere (e.g. anomalies, new models)
- Hibernating false positives saves analysts unrewarding, repetitive work
- Analysts need exposure to actual suspicious behaviour

Increased vigilance

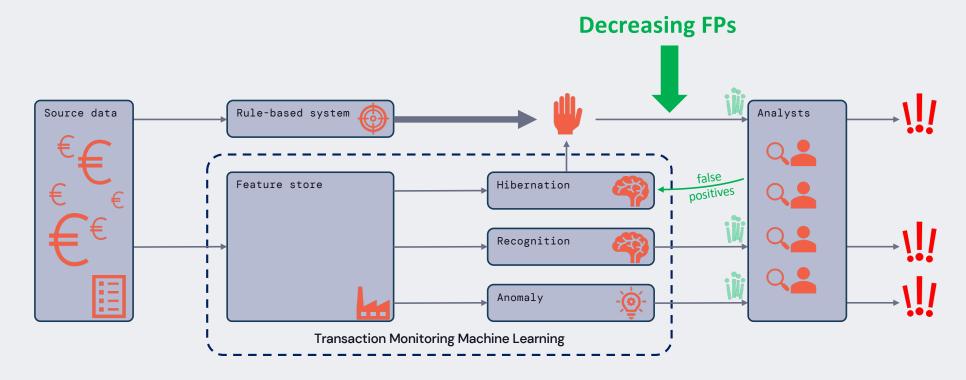
- Recognition model extrapolates existing knowledge of SAR-filings
- Anomaly model expands existing knowledge, searching for 'unknown unknown' suspicious behaviour

Business value supports data science + developer teams

Continuous retraining

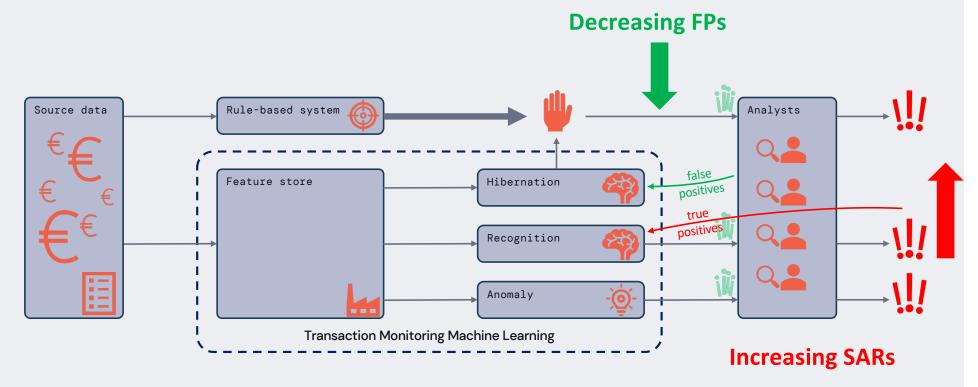


Continuous retraining – human-in-the-loop



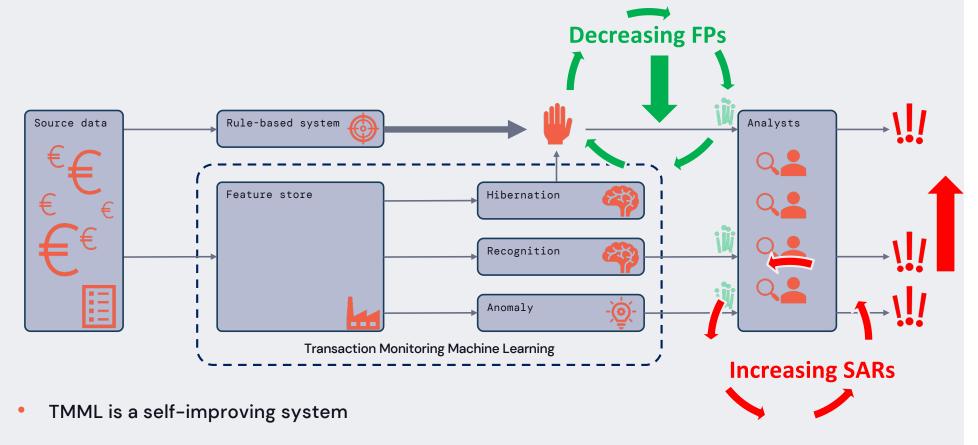
Rule-based system + hibernation is self-correcting

Continuous retraining – human-in-the-loop

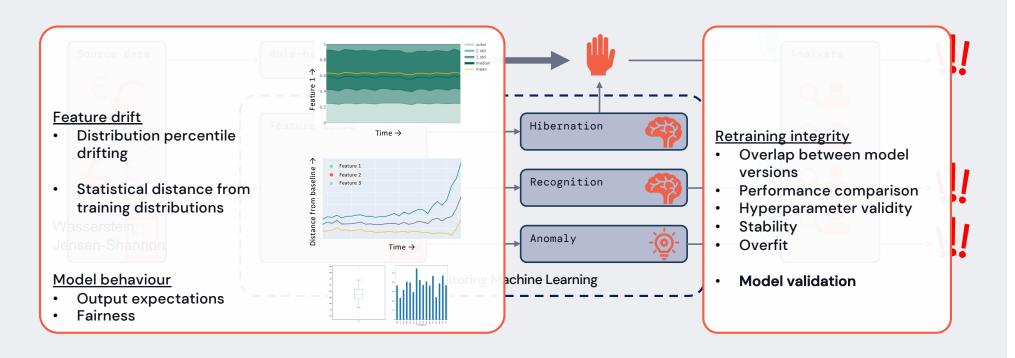


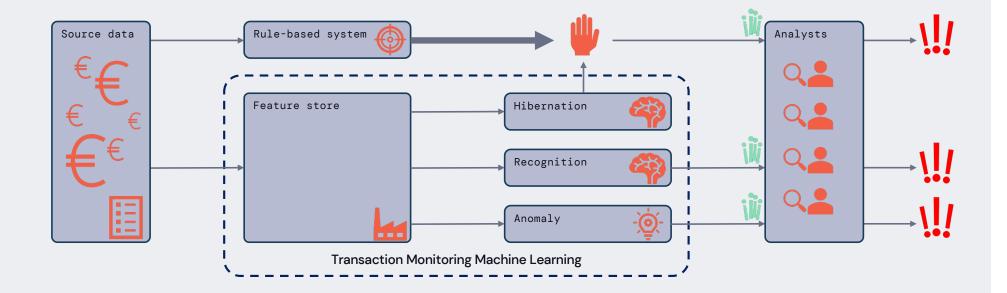
TMML memory grows

Continuous retraining – human-in-the-loop

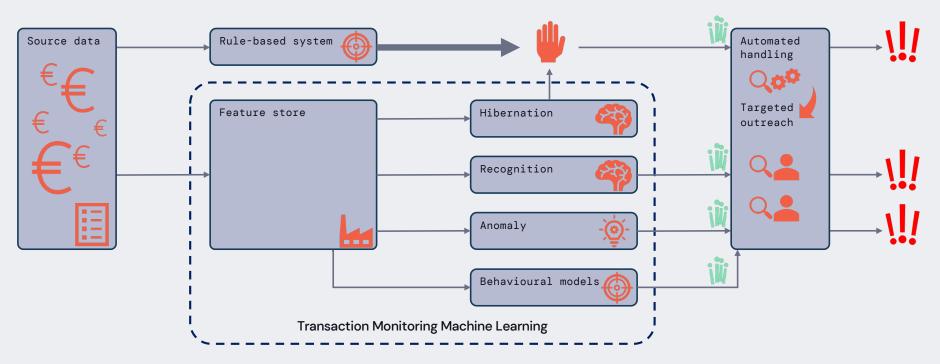


Continuous retraining – monitoring

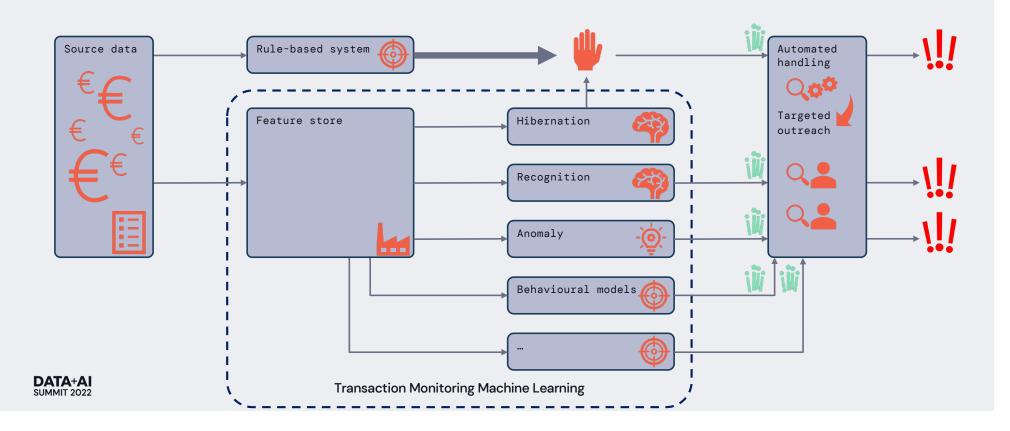


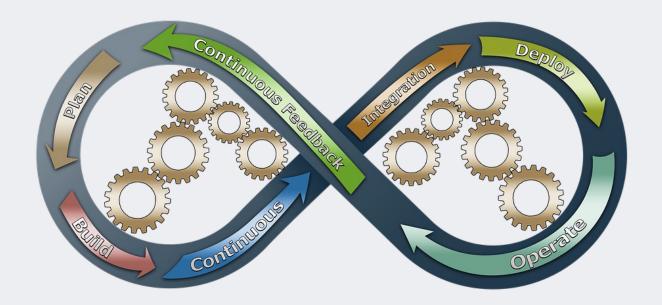


Flexible setup – expandability

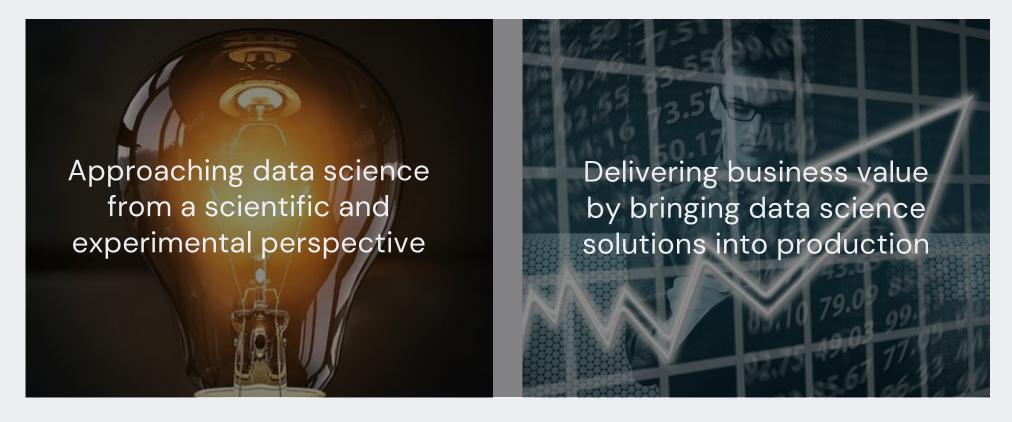


Flexible setup – expandability





Delivering business value by data science



A Common Story

Challenges associated with model productionalization

Lack of suitable infrastructure

Lack of a central model registry

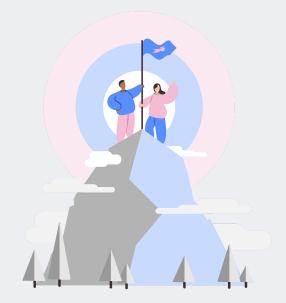
Alignment between IT engineers and data scientists

Lack of multidisciplinary team

Versioning and reproducibility

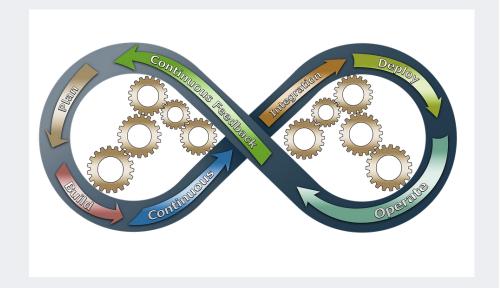
Feedback and iteration

Sharing and reusing features



DevOps principles

- Fast flow from Development to Operations
- Shorten and amplify feedback between teams
- Foster a culture of continual experimentation and learning



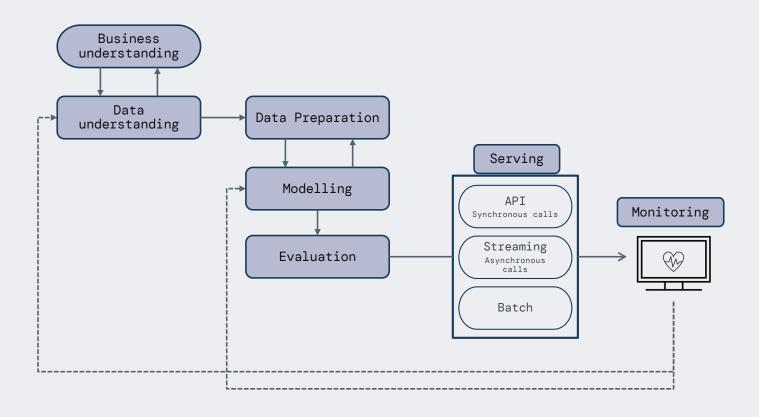
What is MLOps

- Agile ML engineering approach inspired by DevOps
- An approach in which a multi-disciplinary team develops and operationalizes machine learning solutions based on code, data, and models in small increments
- Fully automated deployment of ML model into production
- Reproducible and reliable workflows

Why did we adopt MLOps

- Productionalizing an increasing number of models without having a standardized framework was challenging.
- Retraining and monitoring of existing models, became an increasing bottleneck for data scientists.
- Lack of a framework to implement organizational quality gates.

A typical flow of model development and serving



Our tech stack

Databricks: Notebooks, clusters, Repos, spark, ...

mlflow: tracking experiments, central model registry

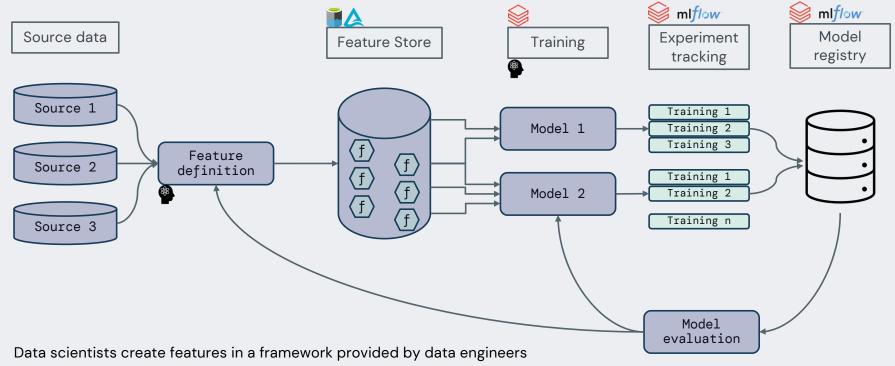
Azure repos: version control codebase

Azure pipelines: automated build and deploy pipelines

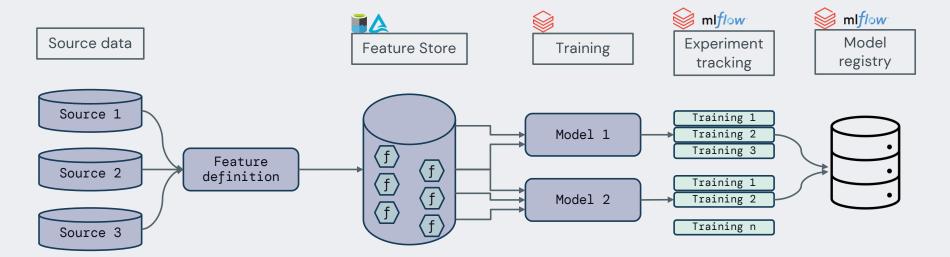
Azure Data Lake storage Gen2 and Delta Lake: feature store implementation

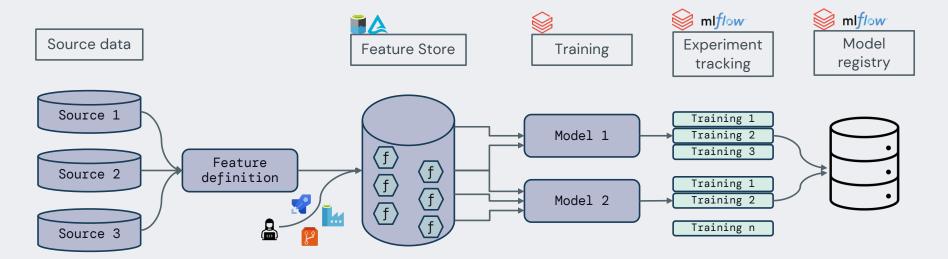
Azure Data Factory: orchestrating data movement and transforming data at scale

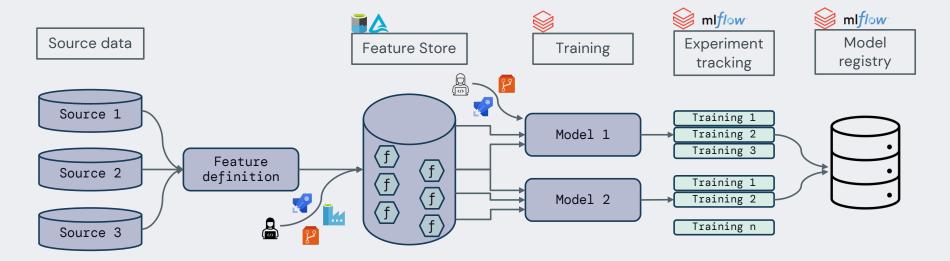
Exploration environment



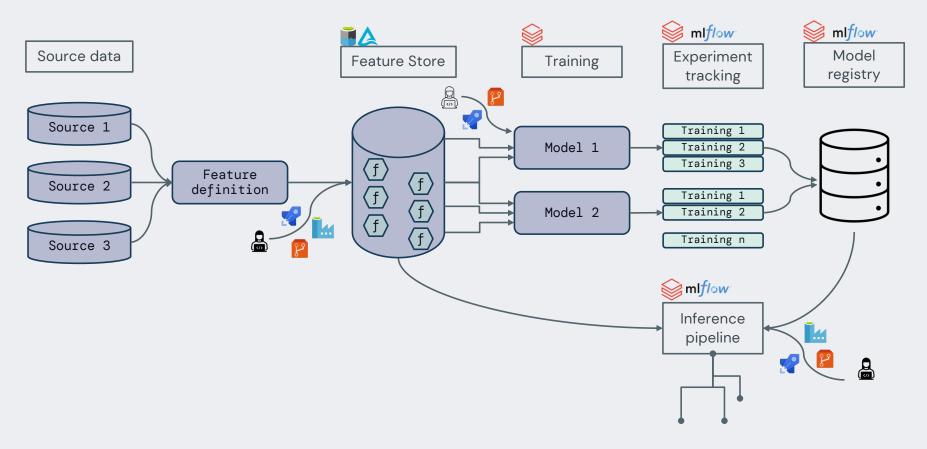
- Data scientists develop models in a framework provided by ML engineers

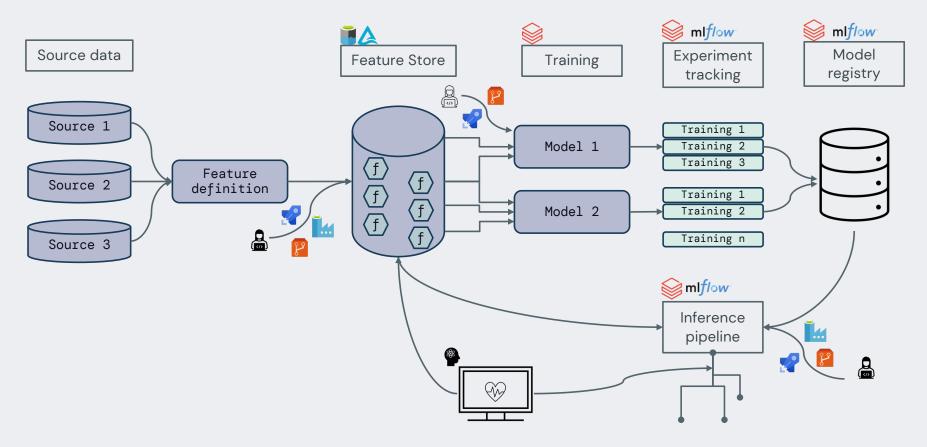




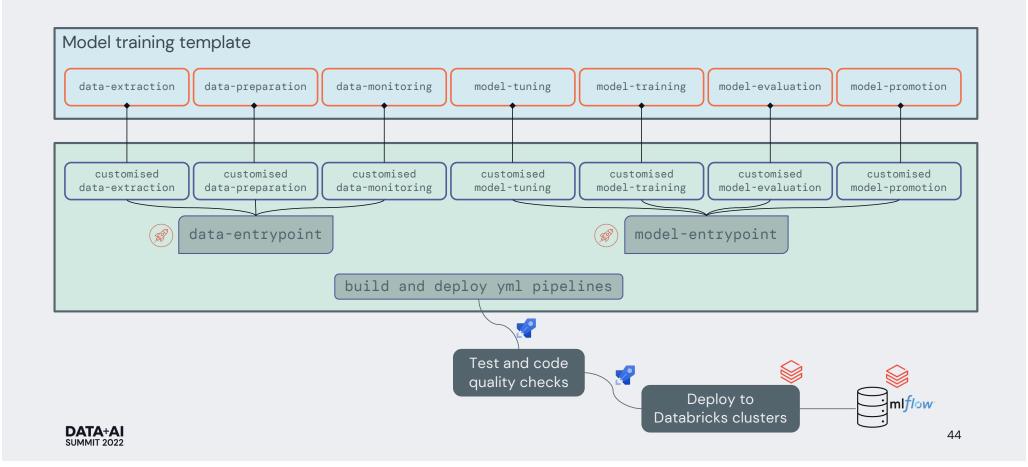


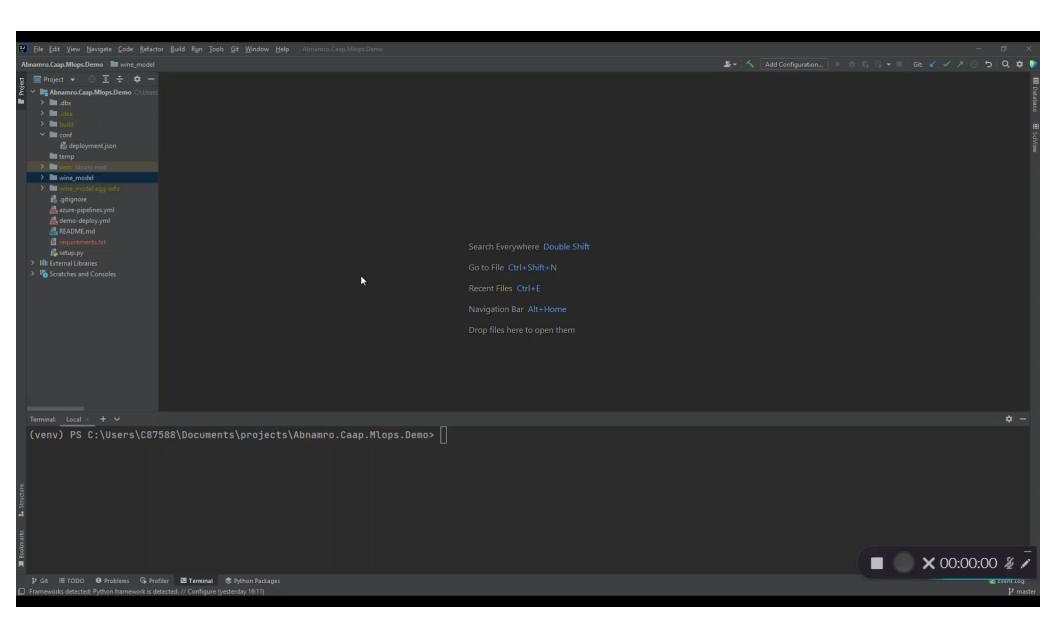
New model implementations are shared with MLEs via pull requests





Standardized training template





Values delivered by applying MLOps

standardization of model development

built-in reproducibility

automated retraining

built-in quality assurance

standardization of quality checks

built-in traceability

semi-automated monitoring

centralized model management

faster productionalization

DATA+AI SUMMIT 2022

Thank you

Lars Haringa, Data Scientist, ABN AMRO Bank

Saman Amini, ML Engineer, ABN AMRO Bank