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• Legal obligation for Transaction Monitoring (TM) ← profits of organised crime

• Unique position for detecting financial crime (DFC)

• Costly operation

• 1/4 Systemically Important Banks banks in NL

• Many millions of transactions per day

• Strictly regulated

Gatekeepers of the financial system
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• Hand-built (a priori)
• Simple
• Many false positives

• E.g. if deposit > threshold, investigate

• Data-driven Transaction Monitoring Machine Learning (TMML)
• Complex: 100s simultaneous decisions
• Efficient

From rule-based TM to TMML



• Transaction data is rich (e.g. sensitive)

• IT to combine and transform various sources continuously

Feature store

Feature store

Obvious possibilities
• Categories
• Periodicity
• Expected behaviour
• Network



Rule-based system

Feature store

Source data Analysts

Feature store



Rule-based system

Feature store Hibernation

Source data Analysts

Supervised model – reducing false positives
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Feature store Hibernation

Source data Analysts

Supervised model – reducing false positives

Ground truth
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Rule-based system

Feature store Hibernation

Source data Analysts

Supervised model – reducing false positives

• Crude decision boundaries

Rule-based alerts



Transaction Monitoring Machine Learning

Rule-based system

Feature store Hibernation

Source data Analysts

Supervised model – reducing false positives

• Detailed decision boundaries
• XGBoost, 100+ features
• Cloud GPU training & inference

Hibernation

Hibernation
Missing SARs
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Feature store Hibernation

Source data Analysts

Supervised model – reducing false positives
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Rule-based system

Feature store Hibernation

Recognition

Source data Analysts

Supervised model – detecting similar cases
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Anomaly

Source data Analysts

Unsupervised model – anomaly detection
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Unsupervised model – anomaly detection

Anomalies
Analysts
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Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Unsupervised model – anomaly detection

Features determine anomalies
• ‘Normal’ vs. suspicious
• Informed by laundering patterns and 

other risks

Soundness for validation without labels
• Ensemble: VAE NN, isolation forest, 

cluster-based
• Empirical verification

Anomaly methodology
Analysts
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Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Results

• Less false positives, more Suspicious Activity Reports

Analysts



False positive reduction: refocus work
• Analyst capacity is needed elsewhere (e.g. anomalies, new models)
• Hibernating false positives saves analysts unrewarding, repetitive work
• Analysts need exposure to actual suspicious behaviour

Increased vigilance
• Recognition model extrapolates existing knowledge of SAR-filings
• Anomaly model expands existing knowledge, searching for ‘unknown 

unknown’ suspicious behaviour

Business value supports data science + developer teams

Results – business value
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Continuous retraining

Analysts



Transaction Monitoring Machine Learning

Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Continuous retraining – human-in-the-loop
Decreasing FPs

• Rule-based system + hibernation is self-correcting

false
positives

Analysts



Analysts

Transaction Monitoring Machine Learning

Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Continuous retraining – human-in-the-loop

Increasing SARs

Decreasing FPs

• TMML memory grows

false
positives

true
positives



Analysts

Transaction Monitoring Machine Learning

Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Continuous retraining – human-in-the-loop

Increasing SARs

Decreasing FPs

• TMML is a self-improving system
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Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Continuous retraining – monitoring

Feature drift
• Distribution percentile

drifting

• Statistical distance from
training distributions

Wasserstein
Jensen-Shannon

Model behaviour
• Output expectations
• Fairness
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Feature 2
Feature 3

Analysts

Retraining integrity
• Overlap between model 

versions
• Performance comparison
• Hyperparameter validity
• Stability
• Overfit

• Model validation
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Rule-based system

Feature store Hibernation

Recognition
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Source data

Behavioural models

Automated 
handling

Targeted
outreach

Flexible setup – expandability
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Rule-based system

Feature store Hibernation

Recognition

Anomaly

Source data

Behavioural models

…

Automated 
handling

Targeted
outreach

Flexible setup – expandability
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Delivering business value by data science
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Approaching data science 
from a scientific and 

experimental perspective

Delivering business value 
by bringing data science 
solutions into production



A Common Story
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Challenges associated with model productionalization
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Lack of suitable infrastructure

Lack of a central model registry

Alignment between IT engineers and data scientists

Lack of multidisciplinary team

Versioning and reproducibility

Feedback and iteration  

Sharing and reusing features



DevOps principles

• Fast flow from Development to 
Operations

• Shorten and amplify feedback 
between teams

• Foster a culture of continual 
experimentation and learning
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What is MLOps

• Agile ML engineering approach inspired by DevOps

• An approach in which a multi-disciplinary team develops and 
operationalizes machine learning solutions based on code, data, and 
models in small increments

• Fully automated deployment of ML model into production

• Reproducible and reliable workflows

34



Why did we adopt MLOps

• Productionalizing an increasing number of models without having a 
standardized framework was challenging.

• Retraining and monitoring of existing models, became an increasing 
bottleneck for data scientists.

• Lack of a framework to implement organizational quality gates.
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A typical flow of model development and 
serving
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Business 
understanding

Data 
understanding Data Preparation

Modelling

Evaluation

Monitoring

Serving

API
Synchronous calls

Streaming
Asynchronous 

calls

Batch



Our tech stack
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Databricks: Notebooks, clusters, Repos, spark, …  MLflow: tracking experiments, central model registry

Azure repos: version control codebase Azure pipelines: automated build and deploy pipelines

Azure Data Factory: orchestrating data movement and transforming data at scale

Azure Data Lake storage Gen2 and Delta Lake: feature store implementation



Exploration environment
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• Data scientists develop models in a framework provided by ML engineers

• Data scientists create features in a framework provided by data engineers



DTAP environment
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DTAP environment
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DTAP environment
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• New model implementations are shared with MLEs via pull requests
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DTAP environment
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DTAP environment
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Standardized training template
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Model training template

data-extraction data-preparation data-monitoring model-tuning model-training model-evaluation model-promotion

customised
data-extraction

customised 
data-preparation

customised 
data-monitoring

customised 
model-tuning

customised 
model-training

customised 
model-evaluation

customised 
model-promotion

data-entrypoint model-entrypoint

build and deploy yml pipelines

Test and code 
quality checks

Deploy to 
Databricks clusters



Demo
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Values delivered by applying MLOps
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standardization of model development

faster productionalization

standardization of quality checks

automated retraining semi-automated monitoring

built-in quality assurance

built-in reproducibility built-in traceability

centralized model management
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Thank you
Lars Haringa, Data Scientist, ABN AMRO Bank

Saman Amini, ML Engineer, ABN AMRO Bank


