DATA+AI

SUMMIT 2022

Designing Better
MLOps Systems

Considerations for their nuts and bolts

é!i/ Chengyin Eng
ORGANIZED BY & databricks 3 Senior Data Science Consultant, Databricks

Chengyin Eng

DATA+AI

SUMMIT 2022

Senior Data Science Consultant at
Databricks

Focus: Scalable ML, NLP, end-to-end ML
pipeline and architecture design

Master’s in Computer Science

Bachelors in Environmental Science and
Statistics

What's an MLOps system?

Data + features + model + deployment + workflow and resource management

Project
-2 Scoping ~.
. >y

Business

- —h Data
Anal
i Management
2~ 8
N N]
] 2N]
¥ N v
Monitoring ML Model

& Maintenance &---> Development
P, «
Deloyment

Machine

Learning =

Image sources: Emmanuel Raj, Chip Huyen

DATA+AI 5

SUMMIT 2022

What's an MLOps system?

Data + features + model + deployment + workflow and resource management

ML System

Deployment
K—JH i

Testing, Release, Monitoring, Updates

Fealire ML Models Magel
| Engineering Evaluation |

r 3

Data

Infrastructure

Adapted from Chip Huyen
DATA+AI 4

SUMMIT 2022

MLOps system requirements

It enables and supports an iterative process

Reliable Maintainable

DATA+AI

2222222222

A model is not the product

ML System

Deployment

A model is not the product;

Testing, Release, Monitoring, Updates

the system is the i
product.

Infrastructure

(Scalability)

Choose efficient file formats

Consider downstream usage

* File formats

Use column-oriented .delta or .parquet, rather than .csv

» Especially if you access feature subsets
» Store in partitions

/\ DELTA LAKE...

Search . 5o vs
Documentation > Optimizations

1 Delta Lake
Introduction O 1 H 1
- ptimizations DELTA LAKE
Table batch reads and writes Delta Lake provides optimizations that accelerate data lake operations.

Table streaming reads and writes

Table deletes, updates, and merges

Optimize performance with file management

Table utility commands

Constralints To improve query speed, Delta Lake supports the ability to optimize the layout of data in storage. There are various ways to optimize the layout.

Image source

DATAAI .

SUMMIT 2022

https://docs.delta.io/latest/optimizations-oss.html

(Reliability

Split into train/test to avoid data leakage?

Ensure data quality = important first step to a trustworthy model

If time-dependent, split by time

Training set

Split before scaling features Labeled

observations

Split before imputation
Especially if you impute with data statistics

Test set

Check for duplicates before splitting

CIFAR 10 and CIFAR 100 have lots of duplicates
3.25 and 10% respectively

Image source

DATA+AI -

SUMMIT 2022

https://pythonbasics.org/split-train-test/

(Reliability)

Data versioning and testing

Allows early detection of inconsistencies

+ Keep track of data versions

Use file names?
e Cumbersome and not robust

Use open source Delta storage format
Helps with debugging production errors due to errors (Delta time travel)

DataFrameReader options

DataFrameReader options allow you to create a DataFrame from a Delta table that is fixed to a specific version of the table.

Python

dfl = spark.read.format("delta").option("timestampAsOf", timestamp_string).load("/tmp/delta/peoplelOm")
df2 = spark.read.format("delta").option("versionAsOf", version).load("/tmp/delta/peoplel®Om")

For timestamp string, only date or timestamp strings are accepted. For example, "2019-01-01" and "2019-01-01T00:00:00.000Z".

DATAAI .

SUMMIT 2022

(Reliability)

Data versioning and testing

Allows early detection of inconsistencies

Do the schemas match?
Including targets

* Does the data have all the expected features?

Change a column type

Python

spark.read.table(...) \
.withColumn("birthDate", col("birthDate").cast("date")) \
.write \
.format ("delta") \
.mode ("overwrite")
.option("overwriteSchema", "true") \
.saveAsTable(...)

DATA+AI

SUMMIT 2022 12

(Maintainability)

Myth: More features = better model

Prioritize relevance and maintainability

- Higher number of features can lead to:
Overfitting
Larger model size = higher memory requirements to serve the model
Higher model latency
Higher technical debt

Useless features

DATA+AI

SUMMIT 2022 14

(Reliability)

Understand feature importance

Relevance, fairness, and accountability

Involve SMEs

Relationship between the features and the target

Correlation between features

Tools:

built-in feature importance
SHAP, LIME, InterpretML
Fairlearn

DATA+AI .

SUMMIT 2022

https://interpret.ml/
https://fairlearn.org/

(Maintainability)

Reduce feature engineering effort

Enable consistency and re-use

 Feature registry / store

Informally, feature tables in a data path

Formally, a specialized feature store for feature tables
« Avoid training/serving skew

v Features (21)

Consumers
Feature * Data Type
Models Endpoints Jobs Notebooks

accommodates DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

bathrooms DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

bed_type INTEGER chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

bedrooms DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference
DELTA LAKE beds DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

host_total_listings_count DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

latitude DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

longitude DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

minimum_nights DOUBLE chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

neighbourhood_cleansed INTEGER chengyin_airbnb_fs_model_83966f/1 - - 01_Distributed_Inference

DATAAI = s

SUMMIT 2022 HIENBIE

Inverse pyramid of complexity

Start with simple models
Evaluate model architectures under similar setups

Check model assumptions

Single node first, before distributed

DATA+AI

SUMMIT 2022

Rule-based

Classical ML

Deep
Learning

<: Maintainability :>

18

(Reliability)

Don’t chase after the shiny stars
Applied ML != Research ML

4 Francois Chollet &

* SOTA on research data != SOTA on your data @ arcri

The thing is, applied ML engineers have opposite
needs to those of researchers. When you do applied

* |s there Community support? ML, you need a framework that's feature-complete,
reasonably prescriptive, high-level, that guides you
towards industry best practices. And ofc you want it to
be production-ready.

®» Researchers want:
o Minimalistic library
o Non-prescriptive, low-level
o Simple mental models, as few features as possible

o Applied ML engineers want:
Feature-complete framework
Prescriptive, guide towards best practices
Easy to use, high-level

Stable over time

0O O O O

5:54 PM - Jun 21, 2022 - Twitter Web App

DATA-AI 0

SUMMIT 2022

https://twitter.com/fchollet/status/1539411350681636864?s=20&t=rW2mmqu1nkvUoIdVzryydw

(: Reliability :)
Track and version models for reproducibility

Hyperparameters

Evaluation metrics

Know your project goal: are there any business metrics?
What's the class imbalance ratio?

Artifacts
Feature importance file, model object, evaluation plots

Environment details
Same package versions in dev and prod; cloud, containers

DATA+AI 20

SUMMIT 2022

m |fl OW'

»

Parameters (18)

Metrics (5)

Tags (2)

Artifacts

¥ m model
B MLmodel
B conda.yaml
B model.pkl

B requirements.txt

DATA+AI

SUMMIT 2022

Full Path:dbfs:/databricks/miflow-tracking/4fdbc181e006410fb0124f37fc274eaa/5a8c6da0937748f09ffd255d6bc07 7e5/artifact... O

MLflow Model

The code snippets below demonstrate how to make predictions using the logged model. You can also register it to the model registry to version control and deploy as a REST endpoint for real

time serving.

Model schema

Input and output schema for your model. Learn more

Name

E Inputs (16)

host_total_listings_count

neighbourhood_cleansed

Zipcode

property_type

room_type

B oOutputs (1)

Type

double
integer
integer
integer

integer

Tensor (dtype: float64,

Make Predictions

Predict on a Spark DataFrame: a

import mlflow
logged_model = 'runs:/5a8c6da0937748f09ffd255d6bc@77e5/model"

Load model as a Spark UDF. Override result_type if the model does not return double values.
loaded_model = mlflow.pyfunc.spark_udf(spark, model_uri=logged_model, result_type='double')

Predict on a Spark DataFrame.
columns = list(df.columns)
df.withColumn('predictions', loaded_model(xcolumns)).collect()

Predict on a Pandas DataFrame: a

import mlflow
logged_model = 'runs:/5a8c6da@937748f09ffd255d6bc@77e5/model"

Load model as a PyFuncModel.
loaded_model = mlflow.pyfunc.load_model(logged_model)

Predict on a Pandas DataFrame.
import pandas as pd
loaded_model.predict(pd.DataFrame(data))

Register Model

21

Deployment = test + release

Test robustness and performance before a model release

DATA+AI

SUMMIT 2022

Deployment

Testing

Release

J .

C

Reliability :>

23

(Reliability)

Model testing

Write up a checklist of required and nice-to-have tests

Key metrics
Testing on random data points
Unit tests for model robustness using real data

Post-training tests:
Invariance test: data augmentation — do the augmented vs. original inputs affect
model outputs?
Minimum functionality test — does the model perform well on “very easy” samples?
Directional expectation — does an increase/decrease in inputs affect model
outputs?

Example tool: deepchecks

DATAAI 2

SUMMIT 2022

https://deepchecks.com/

(Reliability)

Deployment methods

What about acceptable fallbacks? A “dumb” model or the last model?

- Shadow: Deploy in parallel with the existing model
Only serve the existing model’s prediction

« A/B: Deploy in parallel.

The new model serves a percentage of traffic.

Before After A/B
2 13 1 1 3] (AR 2 2 2 0 31
& B B B TR
2 3 3 5 3 9 31 1 1 3 1
3 1 1 3] 2 3 7 3 T 31

(Reliability)

Deployment methods

What about acceptable fallbacks? A “dumb” model or the last model?
« Canary: Roll out incrementally to a subset of users

 Interleave: Show both new and existing models’ predictions

DATA+AI

SUMMIT 2022

Before After Canary
Live Live Phase 1 Live Phase 2 Live Phase 3
st Wil R U
RRR T RB R
i i W & | o
V1.1 V1.1 V1.1

26

C Maintainability)

Monitoring

Tracks pre-declared metrics, aka the known-unknowns

- Data drifts

Happens more often than assumed (not just black swan events)
Types of drift

Feature drift
Label drift

Predition drif et GOOORO O ORROBAN A AR
Concept drift i . £ ke oo amiRe

sudden OOOOOOOOOAAAAAAAAA}

incremental OO OO O O; < ‘_ : : i ﬂﬂ Aé& AAA
recurring iA _A\‘ Q O O \A A_AA _A’AA‘ O O OA:—A;AA)

- Establish a trusted baseline data
Analyze on subsets/slices — aggregate metrics may not reveal non-benign shifts

Image source

DATA+AI -

SUMMIT 2022

https://www.researchgate.net/publication/321627304_Online_Ensemble_Learning_with_Abstaining_Classifiers_for_Drifting_and_Noisy_Data_Streams

Monitoring

Tracks pre-declared metrics, aka the known-unknowns

- Model evaluation metrics

Business KPIs

* |nfrastructure

DATA+AI

SUMMIT 2022

of predictions served
CPU/GPU utilization
System uptime / downtime

<: Maintainability :>

rMonitoring

[Alerts J [DashboardsJ [ThresholdsJ

J

)

(Maintainability)

Observability

Understand the unexpected, aka the unknown-unknowns

* Observe all the possible behaviors that a When | try to kill a bug, but |
system might exhibit [Uie=:
* More fine-grained: you can reconstruct the e 17-%
. ! Lo
circumstances s ' Ay

Logs with high cardinality: e.g. container ID,
which event, who, what function, metadata, etc.

omgtooreal.tumblir.com

+ Sociotechnical: enabled by team

DATAAI a6

SUMMIT 2022

Retraining
Consider the nitty-gritty before a blind retrain

- How?
 What data?

« When?

DATA+AI

SUMMIT 2022

<: Maintainability :>

31

Retraining
Consider the nitty-gritty before a blind retrain

* How?
Train from scratch
Train the existing model on new data (stateful training), e.g. DL

 What data?
When the data started to shift? More/less recent than that?

« When?

Manual or scheduled trigger

Based on metrics (automated)

Performance-based
Volume-based
Drift-based

DATA+AI

SUMMIT 2022

<: Maintainability :>

32

Reliability

Human oversight is crucial.

Not everything can/should be automated.

Case in point: Avoid degenerate retraining feedback loops

Ingest Bad Data

Image source

https://i.pinimg.com/originals/d7/c5/b3/d7c5b343d1d051aa1656c8570e849cb0.jpg

(Adaptability)

Infrastructure

Your workflow should guide the infrastructure and tooling decisions

« What's the overall workflow?

Do | want to use a model store, feature store, etc.?
Do | have a dev/staging/prod environment?

» Resource management
Can | afford to deploy a compute-intensive model over the long term?
Does it enable reliability and innovation?

Do | use containers?
Do | buy or build?

- Job orchestration

Trigger jobs based on artifacts, schedules, Git, API?
DATA+AI -

SUMMIT 2022

Each nut and bolt makes up the entire
robust MLOps system

Reliable Maintainable

DATA+AI

2222222222

37

ML System

Deployment

A model is not the product;

Testing, Release, Monitoring, Updates

the system is the i
product.

Infrastructure

Best Practices

Documentation is important!

e Code modularization

 No commenting out code
« Maintainability over complexity
- Even SQL formatting matters!

« Don't be tool zealots — be agnostic!

- Think about trade-offs

« Conduct regular architectural reviews to address weak spots
« Tracking and versioning helps with debugging outages

« Conduct post-mortems - be truth-seeking and blameless!

DATA+AI

SUMMIT 2022

39

Big-picture questions

Where is the data?
What's the data quality?

Where is the code? Code versioning?

What's the model impact?

Model interpretability?
Why are we building this?

Who consumes the model outputs?
How to pass the results to the end users?

What are the existing pain points?
How often do you need to run the model?
What's the desired model latency?

DATA+AI

SUMMIT 2022

4]

Typical software engineering doesn’t 100% apply
ML system = (changing) data + code

+ Software engineering: Waterfall -> Agile -> DevOps

-« Agile / scrum is not always suitable for ML projects
One day sprint could be better than planning out 2-week sprint
No rewriting JIRA tickets!

Planning and Feasibility
Study

Requirements
Analysis

Design

Testing

Deployment

Maintenance
I = Image source: Emmanuel Raj

DATAAI 5

SUMMIT 2022

References

Designing ML Systems by Chip Huyen
Reliable Machine Learning by Chen et al
Engineering MLOps by Emmanuel Raj
Eugene Yan: Blog Post on DS and Agile

In-progress:

« Effective Python: 90 Specific Ways by Brett Slakin

« Observability Engineering by Majors et al

To-read:

« Data Quality Fundamentals by Moses et al

DATA+AI

SUMMIT 2022

43

https://learning.oreilly.com/library/view/designing-machine-learning/9781098107956/
https://learning.oreilly.com/library/view/reliable-machine-learning/9781098106218/
https://learning.oreilly.com/library/view/engineering-mlops/9781800562882/
https://eugeneyan.com/writing/data-science-and-agile-what-works-and-what-doesnt/
https://learning.oreilly.com/library/view/effective-python-90/9780134854717/
https://learning.oreilly.com/library/view/observability-engineering/9781492076438/
https://www.oreilly.com/library/view/data-quality-fundamentals/9781098112035/

Slides are on

bit.ly/cy_talks

Chengyin Eng

about +whatido education contact

Data + Al Summit, June 2022 DATA+AI

Designing Better MLOps Designing Better

MLOps Systems

Systems

http://chengyineng.com/talks

DATA+AI

SUMMIT 2022

e
e @J‘f

F‘iu--
EI"-.._ .%

Thank You! Questions?

E £ Chengyin Eg

- o
/[
. &N ig nnnnnnnnnnnnnnnnnnnnnnnnnnn
W

