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What’s an MLOps system? 
Data + features + model + deployment + workflow and resource management

3
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What’s an MLOps system? 
Data + features + model + deployment + workflow and resource management
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Adapted from Chip Huyen



MLOps system requirements
It enables and supports an iterative process
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A model is not the product
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A model is not the product; 

the system is the 
product.
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Data
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Choose efficient file formats
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Consider downstream usage

• File formats 
• Use column-oriented .delta or .parquet, rather than .csv 

• Especially if you access feature subsets 
• Store in partitions

Image source

Scalability

https://docs.delta.io/latest/optimizations-oss.html


Split into train/test to avoid data leakage?
Ensure data quality = important first step to a trustworthy model

• If time-dependent, split by time

• Split before scaling features 

• Split before imputation
• Especially if you impute with data statistics 

• Check for duplicates before splitting
• CIFAR 10 and CIFAR 100 have lots of duplicates

• 3.25 and 10% respectively
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https://pythonbasics.org/split-train-test/


Data versioning and testing
Allows early detection of inconsistencies

• Keep track of data versions
• Use file names? 

• Cumbersome and not robust 

• Use open source Delta storage format 
• Helps with debugging production errors due to errors (Delta time travel)
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Data versioning and testing
Allows early detection of inconsistencies

• Do the schemas match? 
• Including targets

• Does the data have all the expected features?
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Features
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Myth: More features = better model
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Prioritize relevance and maintainability

• Higher number of features can lead to: 
• Overfitting 
• Larger model size = higher memory requirements to serve the model
• Higher model latency
• Higher technical debt

• Useless features 

Maintainability



Understand feature importance 
Relevance, fairness, and accountability

• Involve SMEs

• Relationship between the features and the target

• Correlation between features 

• Tools: 
• built-in feature importance
• SHAP, LIME, InterpretML
• Fairlearn
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https://interpret.ml/
https://fairlearn.org/


Reduce feature engineering effort
Enable consistency and re-use

• Feature registry / store 
• Informally, feature tables in a data path
• Formally, a specialized feature store for feature tables

• Avoid training/serving skew 

16

Maintainability



Models
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Inverse pyramid of complexity
Iteration is your best friend

• Start with simple models
• Evaluate model architectures under similar setups

• Check model assumptions 

• Single node first, before distributed 
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Don’t chase after the shiny stars
Applied ML != Research ML

• SOTA on research data != SOTA on your data

• Is there community support?
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https://twitter.com/fchollet/status/1539411350681636864?s=20&t=rW2mmqu1nkvUoIdVzryydw


Track and version models for reproducibility
Don’t forget about the environment details

• Hyperparameters

• Evaluation metrics
• Know your project goal: are there any business metrics?
• What’s the class imbalance ratio? 

• Artifacts 
• Feature importance file, model object, evaluation plots

• Environment details 
• Same package versions in dev and prod; cloud, containers 
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Deployment
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Deployment = test + release
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Test robustness and performance before a model release

Reliability



Model testing
Write up a checklist of required and nice-to-have tests

• Key metrics
• Testing on random data points
• Unit tests for model robustness using real data 
• Post-training tests:

• Invariance test: data augmentation – do the augmented vs. original inputs affect 
model outputs? 

• Minimum functionality test – does the model perform well on “very easy” samples?
• Directional expectation – does an increase/decrease in inputs affect model 

outputs? 

• Example tool: deepchecks
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https://deepchecks.com/


Deployment methods
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What about acceptable fallbacks? A “dumb” model or the last model?

• Shadow: Deploy in parallel with the existing model 
• Only serve the existing model’s prediction

• A/B: Deploy in parallel. 
• The new model serves a percentage of traffic. 

 
A/B

Reliability



Deployment methods
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What about acceptable fallbacks? A “dumb” model or the last model?

• Canary: Roll out incrementally to a subset of users 

• Interleave: Show both new and existing models’ predictions
 

Canary

Reliability



Monitoring and 
Observability,
Retraining
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Monitoring
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Tracks pre-declared metrics, aka the known-unknowns

• Data drifts
• Happens more often than assumed (not just black swan events) 
• Types of drift

• Feature drift
• Label drift 
• Prediction drift
• Concept drift

• Establish a trusted baseline data 
• Analyze on subsets/slices – aggregate metrics may not reveal non-benign shifts

Image source

Maintainability

https://www.researchgate.net/publication/321627304_Online_Ensemble_Learning_with_Abstaining_Classifiers_for_Drifting_and_Noisy_Data_Streams


Monitoring
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Tracks pre-declared metrics, aka the known-unknowns

• Model evaluation metrics
• Business KPIs

• Infrastructure
• # of predictions served 
• CPU/GPU utilization 
• System uptime / downtime 

Maintainability



Observability
Understand the unexpected, aka the unknown-unknowns

• Observe all the possible behaviors that a 
system might exhibit

• More fine-grained: you can reconstruct the 
circumstances

• Logs with high cardinality: e.g. container ID, 
which event, who, what function, metadata, etc.

• Sociotechnical: enabled by team 
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• How? 

• What data?

• When?

Retraining
Consider the nitty-gritty before a blind retrain
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• How? 
• Train from scratch
• Train the existing model on new data (stateful training), e.g. DL

• What data?
• When the data started to shift? More/less recent than that? 

• When?
• Manual or scheduled trigger
• Based on metrics (automated)

• Performance-based
• Volume-based
• Drift-based

Retraining
Consider the nitty-gritty before a blind retrain
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Human oversight is crucial. 

Not everything can/should be automated.

Case in point: Avoid degenerate retraining feedback loops 
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Ingest Bad Data Retrain
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https://i.pinimg.com/originals/d7/c5/b3/d7c5b343d1d051aa1656c8570e849cb0.jpg


Workflow and Resource 
Management
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Infrastructure
Your workflow should guide the infrastructure and tooling decisions

• What’s the overall workflow?
• Do I want to use a model store, feature store, etc.? 
• Do I have a dev/staging/prod environment? 

• Resource management
• Can I afford to deploy a compute-intensive model over the long term?
• Does it enable reliability and innovation?  
• Do I use containers? 
• Do I buy or build?

• Job orchestration
• Trigger jobs based on artifacts, schedules, Git, API?
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Wrap Up
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Each nut and bolt makes up the entire 
robust MLOps system
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A model is not the product; 

the system is the 
product.
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Best Practices 

• Documentation is important! 
• Code modularization

• No commenting out code 
• Maintainability over complexity
• Even SQL formatting matters!  

• Don’t be tool zealots – be agnostic! 
• Think about trade-offs 
• Conduct regular architectural reviews to address weak spots 
• Tracking and versioning helps with debugging outages
• Conduct post-mortems - be truth-seeking and blameless! 
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Resources
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Big-picture questions
Consider these first before writing any code

• Where is the data?
• What’s the data quality?

• Where is the code? Code versioning? 
• What’s the model impact? 

• Model interpretability? 
• Why are we building this? 

• Who consumes the model outputs? 
• How to pass the results to the end users? 

• What are the existing pain points? 
• How often do you need to run the model? 
• What’s the desired model latency? 
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Typical software engineering doesn’t 100% apply
ML system = (changing) data + code

• Software engineering: Waterfall -> Agile -> DevOps

• Agile / scrum is not always suitable for ML projects 
• One day sprint could be better than planning out 2-week sprint
• No rewriting JIRA tickets!
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Slides are on

bit.ly/cy_talks
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http://chengyineng.com/talks
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Thank You! Questions?


