
Considerations for their nuts and bolts

1

Chengyin Eng
Senior Data Science Consultant, Databricks

Designing Better
MLOps Systems

Chengyin Eng

▪ Senior Data Science Consultant at
Databricks

▪ Focus: Scalable ML, NLP, end-to-end ML
pipeline and architecture design

▪ Master’s in Computer Science

▪ Bachelors in Environmental Science and
Statistics

What’s an MLOps system?
Data + features + model + deployment + workflow and resource management

3

Image sources: Emmanuel Raj, Chip Huyen

What’s an MLOps system?
Data + features + model + deployment + workflow and resource management

4

Adapted from Chip Huyen

MLOps system requirements
It enables and supports an iterative process

5

ScalableReliable AdaptableMaintainable

A model is not the product

6

A model is not the product;

the system is the
product.

7

Data

8

Choose efficient file formats

9

Consider downstream usage

• File formats
• Use column-oriented .delta or .parquet, rather than .csv

• Especially if you access feature subsets
• Store in partitions

Image source

Scalability

https://docs.delta.io/latest/optimizations-oss.html

Split into train/test to avoid data leakage?
Ensure data quality = important first step to a trustworthy model

• If time-dependent, split by time

• Split before scaling features

• Split before imputation
• Especially if you impute with data statistics

• Check for duplicates before splitting
• CIFAR 10 and CIFAR 100 have lots of duplicates

• 3.25 and 10% respectively

10

Image source

Reliability

https://pythonbasics.org/split-train-test/

Data versioning and testing
Allows early detection of inconsistencies

• Keep track of data versions
• Use file names?

• Cumbersome and not robust

• Use open source Delta storage format
• Helps with debugging production errors due to errors (Delta time travel)

11

Reliability

Data versioning and testing
Allows early detection of inconsistencies

• Do the schemas match?
• Including targets

• Does the data have all the expected features?

12

Reliability

Features

13

Myth: More features = better model

14

Prioritize relevance and maintainability

• Higher number of features can lead to:
• Overfitting
• Larger model size = higher memory requirements to serve the model
• Higher model latency
• Higher technical debt

• Useless features

Maintainability

Understand feature importance
Relevance, fairness, and accountability

• Involve SMEs

• Relationship between the features and the target

• Correlation between features

• Tools:
• built-in feature importance
• SHAP, LIME, InterpretML
• Fairlearn

15

Reliability

https://interpret.ml/
https://fairlearn.org/

Reduce feature engineering effort
Enable consistency and re-use

• Feature registry / store
• Informally, feature tables in a data path
• Formally, a specialized feature store for feature tables

• Avoid training/serving skew

16

Maintainability

Models

17

Inverse pyramid of complexity
Iteration is your best friend

• Start with simple models
• Evaluate model architectures under similar setups

• Check model assumptions

• Single node first, before distributed

18

Maintainability

Don’t chase after the shiny stars
Applied ML != Research ML

• SOTA on research data != SOTA on your data

• Is there community support?

19

Reliability

https://twitter.com/fchollet/status/1539411350681636864?s=20&t=rW2mmqu1nkvUoIdVzryydw

Track and version models for reproducibility
Don’t forget about the environment details

• Hyperparameters

• Evaluation metrics
• Know your project goal: are there any business metrics?
• What’s the class imbalance ratio?

• Artifacts
• Feature importance file, model object, evaluation plots

• Environment details
• Same package versions in dev and prod; cloud, containers

20

Reliability

21

Deployment

22

Deployment = test + release

23

Test robustness and performance before a model release

Reliability

Model testing
Write up a checklist of required and nice-to-have tests

• Key metrics
• Testing on random data points
• Unit tests for model robustness using real data
• Post-training tests:

• Invariance test: data augmentation – do the augmented vs. original inputs affect
model outputs?

• Minimum functionality test – does the model perform well on “very easy” samples?
• Directional expectation – does an increase/decrease in inputs affect model

outputs?

• Example tool: deepchecks

24

Reliability

https://deepchecks.com/

Deployment methods

25

What about acceptable fallbacks? A “dumb” model or the last model?

• Shadow: Deploy in parallel with the existing model
• Only serve the existing model’s prediction

• A/B: Deploy in parallel.
• The new model serves a percentage of traffic.

A/B

Reliability

Deployment methods

26

What about acceptable fallbacks? A “dumb” model or the last model?

• Canary: Roll out incrementally to a subset of users

• Interleave: Show both new and existing models’ predictions

Canary

Reliability

Monitoring and
Observability,
Retraining

27

Monitoring

28

Tracks pre-declared metrics, aka the known-unknowns

• Data drifts
• Happens more often than assumed (not just black swan events)
• Types of drift

• Feature drift
• Label drift
• Prediction drift
• Concept drift

• Establish a trusted baseline data
• Analyze on subsets/slices – aggregate metrics may not reveal non-benign shifts

Image source

Maintainability

https://www.researchgate.net/publication/321627304_Online_Ensemble_Learning_with_Abstaining_Classifiers_for_Drifting_and_Noisy_Data_Streams

Monitoring

29

Tracks pre-declared metrics, aka the known-unknowns

• Model evaluation metrics
• Business KPIs

• Infrastructure
• # of predictions served
• CPU/GPU utilization
• System uptime / downtime

Maintainability

Observability
Understand the unexpected, aka the unknown-unknowns

• Observe all the possible behaviors that a
system might exhibit

• More fine-grained: you can reconstruct the
circumstances

• Logs with high cardinality: e.g. container ID,
which event, who, what function, metadata, etc.

• Sociotechnical: enabled by team

30

Maintainability

• How?

• What data?

• When?

Retraining
Consider the nitty-gritty before a blind retrain

31

Maintainability

• How?
• Train from scratch
• Train the existing model on new data (stateful training), e.g. DL

• What data?
• When the data started to shift? More/less recent than that?

• When?
• Manual or scheduled trigger
• Based on metrics (automated)

• Performance-based
• Volume-based
• Drift-based

Retraining
Consider the nitty-gritty before a blind retrain

32

Maintainability

Human oversight is crucial.

Not everything can/should be automated.

Case in point: Avoid degenerate retraining feedback loops

33
Image source

Ingest Bad Data Retrain

Reliability

https://i.pinimg.com/originals/d7/c5/b3/d7c5b343d1d051aa1656c8570e849cb0.jpg

Workflow and Resource
Management

34

Infrastructure
Your workflow should guide the infrastructure and tooling decisions

• What’s the overall workflow?
• Do I want to use a model store, feature store, etc.?
• Do I have a dev/staging/prod environment?

• Resource management
• Can I afford to deploy a compute-intensive model over the long term?
• Does it enable reliability and innovation?
• Do I use containers?
• Do I buy or build?

• Job orchestration
• Trigger jobs based on artifacts, schedules, Git, API?

35

Adaptability

Wrap Up

36

Each nut and bolt makes up the entire
robust MLOps system

37

ScalableReliable AdaptableMaintainable

A model is not the product;

the system is the
product.

38

Best Practices

• Documentation is important!
• Code modularization

• No commenting out code
• Maintainability over complexity
• Even SQL formatting matters!

• Don’t be tool zealots – be agnostic!
• Think about trade-offs
• Conduct regular architectural reviews to address weak spots
• Tracking and versioning helps with debugging outages
• Conduct post-mortems - be truth-seeking and blameless!

39

Resources

40

Big-picture questions
Consider these first before writing any code

• Where is the data?
• What’s the data quality?

• Where is the code? Code versioning?
• What’s the model impact?

• Model interpretability?
• Why are we building this?

• Who consumes the model outputs?
• How to pass the results to the end users?

• What are the existing pain points?
• How often do you need to run the model?
• What’s the desired model latency?

41

Typical software engineering doesn’t 100% apply
ML system = (changing) data + code

• Software engineering: Waterfall -> Agile -> DevOps

• Agile / scrum is not always suitable for ML projects
• One day sprint could be better than planning out 2-week sprint
• No rewriting JIRA tickets!

42

Image source: Emmanuel Raj

References

• Designing ML Systems by Chip Huyen
• Reliable Machine Learning by Chen et al
• Engineering MLOps by Emmanuel Raj
• Eugene Yan: Blog Post on DS and Agile

In-progress:

• Effective Python: 90 Specific Ways by Brett Slakin
• Observability Engineering by Majors et al

To-read:

• Data Quality Fundamentals by Moses et al
43

https://learning.oreilly.com/library/view/designing-machine-learning/9781098107956/
https://learning.oreilly.com/library/view/reliable-machine-learning/9781098106218/
https://learning.oreilly.com/library/view/engineering-mlops/9781800562882/
https://eugeneyan.com/writing/data-science-and-agile-what-works-and-what-doesnt/
https://learning.oreilly.com/library/view/effective-python-90/9780134854717/
https://learning.oreilly.com/library/view/observability-engineering/9781492076438/
https://www.oreilly.com/library/view/data-quality-fundamentals/9781098112035/

Slides are on

bit.ly/cy_talks

44

http://chengyineng.com/talks

45

Chengyin Eng
Senior Data Science Consultant

Thank You! Questions?

