DATA+AI

SUMMIT 2022

Delta Lake 2.0

And the ever-growing ecosystem

Tathagata Das Denny Lee

Staff Engineer - Databricks Senior Staff Developer Advocate - Databricks

ORGANIZED BY & databricks

databricks Delta Lake

Lakehouse Platform

Data Data Data Data Science T (o) d a y' (3 T (o) p i CS

Warehousing Engineering Streaming and ML

Developer Experience

Delta 2.0 on Spark

Unified Governance and Security

Delta Ecosystem beyond Spark
Flink, Presto, Trino, Standalone

Cloud Data Lake Delta Community

All structured and unstructured data

*—}J_ ICrOSOTt AZure N , s00gle Cl

©2022 Databricks Inc. — Confidential & Subject to Change < 2

Delta Lake is the foundation of the
Lakehouse

The open source table

Lakehouse
storage layer that
brings the best of Data Lake Data
Warehouse
data lakes and data
warehouses

©2022 Databricks Inc. — All rights reserved

Three phases of Delta Lake (abridged)

2017 N\ /2019 /2022

Open Source Delta Lake

Databricks Delta: Analytics
DEIE!

DELTA LAKE

https://delt

DOMINIQUE BREZINSKI, APPLE

©2022 Databricks Inc. — All rights reserved %

TODAY...

Delta Lake 2.0.0
IS INn preview DELTA LAKE

See https://delta.io for P ACHE

details on how to try it out Spqr’(

DATA+AI

2222222222

https://delta.io/

What is in Delta 2.0.0?

Delta 2.0
A lot of new features released in the @‘:
last 1 year °p ()()()
S3 Multi-cluster OPTIMIZE OPTIMIZE Change Data
Writes (compaction) ZORDER Feed

This talk will focus on a few awesome

(o
features that are going to have a =/ @ @ @

1 olumn olumn Dynamic Partition
large impact on your workloads TR rope | Overwrite
B g || U
For rest of the stuff, see the release el ﬁ =
utomatic filterin P ullf=sar empoten
notes and dOCS' ’ ;n Getneraied ; vi:actsljrkrlwzpsl?agts che::/ll<p|f)inr'; wf'ites . Wr?tets t

Columns

DATA+AI

SUMMIT 2022

Data skipping via column stats

Don't read files unnecessarily!

SELECT * FROM events

Column min/max values WHERE year=2020 AND uid=24000

automatically collected when

writing files and stored in Delta Log
™M ... year: min 2018, max 2019

. . . [Frretperauet— T min 12000, max 23000 | Skippedasdata
Read queries can skip files range outside
. . M year: min 2018, max 2020 selected value

completely using min/max values TP *UId: min 12000, max 14000

year: min 2020, max 2020

[:] file3.parquet ;4. min 23000, max 25000
Much better than Parquet row-

group filtering as you don’t need to

even read Parquet footer
DATA+AI

SUMMIT 2022

Optimize ZOrder

Maximize data skipping with data clustering

Data skipping most
effective when files have
very small min/max range

Sorting good for one
column, not multiple

Zorder space filling curve
gives better multi-column
data clustering

DATA+AI

SUMMIT 2022

OPTIMIZE deltaTable ZORDER BY (x, y)

DICIDED
020222 (33

SIGITIS

i}
AN
7
AN
09G4
(
DIOIDID

AWZARAWAN
/

N5 V(3 1)
Zl
AWARWARN
Zl
090963
N> 2)(=)
Zl

"
ZAAN A
AWANWZAN
Zl

"
/

0)())G

/ Linear Order (sorting)
DIOIDID

Z-Order

09 (.9

5,

)

_\

@
S

=

N
\=

&
®)

=
w
a
\w

®
&)

=
w

N
A»

&
S

=
(4]
a
<

&
S

=
a

N
Ao

07 ()

€
S

27) 67

=
3
a
A\~

€]
&)

o
o

N
AN

Optimize ZOrder

Zorder enables great
data skipping in queries
with filters over multiple
columns

Choose Zorder columns
based on query patterns

Re-run zorder if query
patterns change

Evolve data layout based
on your requirements!

DATA+AI

SUMMIT 2022

SELECT * FROM deltaTable

WHERE x = 2 ORy = 3

9 files scanned in total
21 false positives V"

/

2909]

Linear rder sorting)
DISIDIC EEGIDIOID
(4 61 () (1)
0 09 G2 Bg) (2 62 62) (2
SICIPIOMCISIOI®
(49 G9) (9 ()

y=3

7 files scanned in total <&

13 false positives <&

Z-Order

6] D6 D@
0@ 6 DE) 06
D0 (I [B
D@ 6 D6 66
D@ BE 06 B0
0@ 6 BE 6
D0 BE 6 B0
06 BE BE BE

Optimize compaction + Zorder: Perf results

SELECT COUNT(*) FROM store_sales

O.5TB store_sales table WHERE ss_item_sk = 926

from 3TB TPCDS dataset

12500

Baseline: ~40k files about
~13MB each

7500

Compaction: ~1GB files

ad duration (ms)

5000

Median re;

Zorder by ss_item_sk:
~1GB clustered files

2500

Compaction Zorder

DATA+AI

SUMMIT 2022

Change Data Feed : Motivation

Read row-level changes generated by update/delete/merge

Change Data Capture INSERT c, 1 incrementally > incrementally >
s

UPDATE b, 2
propagate change

(CDC) is a common pattern v« 3 L_2Pe0 changes
where row-level changes
are used to build
incremental pipelines

end-to-end incremental pipelines

DATA+AI

SUMMIT 2022

Change Data Feed: Motivation

Read row-level changes generated by update/delete/merge

Applying external row-level

changes is easy with MERGE ~ mstrrc, 1y oreneanny increnentally
UPDATE c: 3 apply changes propagate changes
— SQL, Scala, Python APIs
— Automatic Schema Evolution to
continuously evolve with your data file 1 file 2

key Zal key Xal 1 row inserted
. 2 AMERGE z 1 row updated
— — 7b 2 DELTA LAKE b p
MERGE copy-on-write T 4 \%> &4’ 1 row deleted

rewrites files to change data file rewritten

to change data but these are

.. not tracked in
— optimized for fast reads the file 2

— but which rows changed are not

tracked
DATA+AI

SUMMIT 2022

Change Data Feed: Problem

Read row-level changes generated by update/delete/merge

Readlng JUSt the Changes aggiﬁ ;’ ; incrementally incrementally
rows is inefficient without wpoaTE ¢, 3 | 2PPly changes RliloRaRaReRaNaNrES

more information

file 1 file 2

JOining between tWO I;ey \1/a1 l;ey \1/3:L read changes?>

b |2 b 8
versions can work if there N Z \ [><]/ d_ 14

are unique keys, but highly

how do identify
which rows got

key |val |change
o 3 .C c |3 |deleted changed or deleted?
inefficient b5 Jupdated

d 4 |inserted

expensive join to
identify changes?
DATA+AI

SUMMIT 2022

Change Data Feed: Solution

Read row-level changes generated by update/delete/merge

Store the I‘OW—|eve| Changes LIJI:SE'?E ;’ ; incrementally incrementally
in a separate set of files poATE c, 3 |_2pply changes propagate changes
- Merge/update/delete will
produce the additional change
files file 1 file 2
. . L. key | val key | val
~ Reading change data is efficient |2 1 MERGE > a_ 11
as they are separate files, no EEY Z d_[a
filtering needed changed rows
. written to Koy vl [Change | ead changes
— Reading normal data unaffected separate files b |8 |updated | | efficiently
d 4 inser‘jV

and still efficient
change file

DATA+AI

SUMMIT 2022

Change Data Feed: Batch and Streaming APIs

Read row-level changes generated by update/delete/merge

UPDATE ¢, 3

BU||d |ncrementa| plpe|lneS LIJ'SSE'E ;’ ; streaming + > streaming + >
. . ’ MERGE CDF + MERGE
with Structured Streaming

DELTA LAKE DELTA LAKE

~ Read only latest changes or spark.readStream.format("delta™)

starting from a version .option("readChangeFeed", "true")
.load("/deltaTable")

Query changes between any spark.read.format("delta")

: : .option("readChangeFeed", "true")
table versions or tlmeStampS .option("startingTimestamp", "2021-04-21 05:45:46")
.option("endingTimestamp", "2021-05-21 12:00:00")

— DataFram tion
ataFrame options .load("/deltaTable")

— SQL support in future

DATA+AI

SUMMIT 2022

Column Mapping: Problem

More flexibility in naming, renaming and dropping columns

Problem: Delta 1.1 and below Before Column Mapping
required Parquet files to store data .
. table data file.parquet
with same column name as table
key | val key | val
schema 2 | 1 > |21
b | 8 2 L&
— Cannot change column names without d | a2 d /4

rewriting existing files

— Cannot have characters in column
names not supported by Parquet (e.g.,
no spaces)

DATA+AI

SUMMIT 2022

Column Mapping: Solution

More flexibility in naming, renaming and dropping columns

SOlUtion: Delta]2 intrOduced a With Column Mapping
mapping between the logical .
. table data file.parquet

column name and the physical

- . key | val uuidl | uuid2
column name in the files 2 | 1 a 1

b) b 8
— Physical names are unique d | & d A7
— Logical column renames become a \ /
simple change in the mapping logical | physical

col name col name

— Logical column names can have = Uuidl
arbitrary characters, physical name val uuid2
always Parquet-compliant

DATA+AI

SUMMIT 2022

Column Mapping: APls

More flexibility in naming, renaming and dropping columns

[Delta 1.2]

Support for renaming columns

. ALTER TABLE table_name
Support for arbitrary column names grenaME COLUMN

Use special chars like , ;{}()\n\t= old_col_name TO "{new,col,name}"

[Delta 2.0]
ALTER TABLE table_name

Support for dropping columns DROP COLUMN col_name

DATA+AI

SUMMIT 2022

Multi-cluster writes on S3

Full ACID guarantees without maintaining your own infra

Delta Lake ACID guarantees rely
on mutual exclusion guarantees
from the file system

— Must be able to exclusively create a file
in the Delta log only if absent

— Works great for HDFS, GCS, ADLS, etc.
Allows guarantees without using

distributed locks or leases which
are very hard to get right

DATA+AI

SUMMIT 2022

table dir/ delta log/
|

_ +- 000.json
Writer 1 \+- 001.json
/+- 002.7json

Writer 2

only one of the writers
trying to concurrently write
002.json must succeed =>
only then all changes are
serializable

Multi-cluster writes on S3: Problem

Full ACID guarantees without maintaining your own infra

Problem: S3 does not provide any
mechanism for mutual exclusion

Spark
cluster 1 \ @9@. Json
. 001.json
Delta 1.1 and below did not AR Fxoh
support concurrent writes from Spark / Amazon S3
cluster 2

multiple Spark clusters
both concurrent writes from

different clusters will
succeed and overwrite each

other’s commits =>no

DATA-AI serializability

SUMMIT 2022

Multi-cluster writes on S3: Solution

Full ACID guarantees without maintaining your own infra

Solution: write with mutual
exclusion to DynamoDB

I. Only one writer commits
changes to DynamoDB

DATA+AI

SUMMIT 2022

Spark
cluster1 000 000. json
001 001.json
002
Spa rk / DynamoDB Amazon S3
cluster 2

only one writer succeeds in
committing to DynamoDB
ensuring serializable changes

Multi-cluster writes on S3

Full ACID guarantees without maintaining your own infra

Solution: write with mutual
exclusion to DynamoDB

I. Only one writer commits SIpEs ,
cluster1 000 000.json
changes to DynamoDB 001 @01.json
)) 902 002.json
2. Committed writes synced from spark DynamoDB Amazon S3
DynamoDB to S3 cluster 2 after sync, S3 has consistent log

structure for all readers

Robust solution: no distributed locks or
leases, no self-managed service or infra

DATA+AI

SUMMIT 2022

Multi-cluster writes on S3

Full ACID guarantees without maintaining your own infra

Enable multi-cluster writes in Delta 1.2 and above by setting Spark configs
— Log store type:
spark.delta.logStore.s3.impl = io.delta.storage.S3DynamoDBLogStore

— DynamoDB table details:
spark.io.delta.storage.S3DynamoDBLogStore.ddb.tableName = <table name>

spark.io.delta.storage.S3DynamoDBLogStore.ddb.region = <AWS region>

All writers writing to the same Delta table must be configured with the same
DynamoDB table for correctness

DATA+AI

SUMMIT 2022

Many more features

See docs and release notes for details

Restore (aka rollback) to
previous table versions

Automatic filter generation on
generated partition columns

Better filtering, faster queries

Write impotently to a table
No duplicates on retries

DATA+AI

SUMMIT 2022

.. WHERE eventTime <

RESTORE TABLE deltaTable

TO TIMESTAMP AS OF '2019-02-14 12:00:00'

'2021-05-24 09:00:00.000'

generate extra filter if table is partitioned by
“eventDate" generated from ~eventTime®

'2021-05-24 09:00:00.000'
'2021-05-24"

.. WHERE eventTime <

AND eventDate <

dataframe.write.format("delta")
.option("txnAppId", "myApp")
.option("txnVersion", 10)
.save("/deltaTable")

Expanding the
Delta Ecosystem

Flink, Presto, Trino, and so
much morel!

DATA+AI

2222222222

Flink: Delta Sink

Available since Delta Connectors 0.4

Writes from DataStream<RowData>

in batch or Streammg modes DeltaSink<RowData> deltaSink = DeltaSink

. .forRowData(path, hadoopConf, rowType)
Supports reading by table path on .withPartitionColumns(...)

ADLS, GCS and S3 (single cluster) .build();

Support for 53 multi—cluster using datastream.sinkTo(deltaSink);
DynamoDB coming in Connectors 0.5

Gives exactly once guarantees with
replayable sources

DATA+AI

SUMMIT 2022

Flink: Delta Source

Coming with Delta Connectors 0.5

Reads as DataStream<RowData> DeltaSource
in bounded or continuous mode .forBoundedRowData(path, hadoopConf)

.build();
For bounded, supports querying old
table versions (aka Time Travel) // Time travel
. . DeltaSource
For continuous, supports reading .forBoundedRowData(path, hadoopConf)
full table + changes, OR only .timestampAsOf("2022-02-24 04:55:00")
changes since a version .build();
Supports all file systems // Streaming
DeltaSource
Support for catalog tables + SQL + .forContinuousRowData(path, hadoopConf)
.build();

Table APl in progress

DATA+AI

SUMMIT 2022

Trino / Presto: Delta connector

[Presto and Trino] Supports reads on tables
defined in Hive Metastore

[Trino] Supports data skipping with column stats
[Trino] Supports writes

[Trino] Support Optimize compaction

DATA+AI

SUMMIT 2022

Delta’s expanding ecosystem of connectors

. §€ kafka

Power Bl

,[|||| amazon
ATHENA

I I amazon ") gtnno
REDSHIFT e

SSHIVE

7 X PULSAR
DATAAI

SUMMIT 2022

Google
Big Query

Q)
o
E!
S
da
7d
o
o
=

Delta Standalone

Basis of almost all non-Spark connectors

/A

S

presto .
built
Flink | UYsine

X PULSAR

j beam

DATA+AI

SUMMIT 2022

Delta Standalone

Pure, non-Spark Java library to read/write Delta logs

https://github.com/delta-io/connectors#delta-standalone

https://github.com/delta-io/connectors

Delta
Community

The best part about Delta!

DATA+AI

2222222222

The most widely used lakehouse format in the world

8
[7M Downloads/Month]
Delta Sharing 0.4 Delta 1.2
Delta Shari 03 I ‘ deltars
6 elta sharing O. Python 0.5.7
O trino

. |
§ I 1 o.0C
E ‘I | presto
3 =SHIVE
3 4 Delta Connectors 0.3 ! I
=
3 Delta Sharing 0.1~ Delta Sharing 0.2 Delta 11 |
= | §8 kafka I
= I delta.rs . .
g I Python 0.5 I kafka-dglga—lngest I Flink

> I ’ Delta Connectors 0.4

deltars 0.4
Delta 1.0 | :

©2022 Databricks Inc. — All rights reserved <

We could not do this without the community!

F\\ ‘\ " a e Back<Market

Adobe Alibaba.com

A :
li1l ByteDance @ T COMEAST @

I @ P SAMBATV

. SAFEGRAPH

ebay G

Al
€5 SCRIBD — ¢ Starburst E

©2022 Databricks Inc. — All rights reserved <

Multiple Delta projects and repositories

/A Delta A

179 contributors | 43 organizations

Delta Lake connector for Apache
Spark™ with Scala, Java and Python
APIs.

\ /

/,é(: Delta Sharing

19 contributors | 2 organizations

An open protocol for simple and
secure data sharing.

4 N

é& ! Connectors

21 contributors | 9 organizations

Delta Lake connectors for non-
Spark engines like Hive, Flink, Java,

\ /

©2022 Databricks Inc. — All rights reserved

etc.

\ /

kafka-delta-ingest

6 contributors | 2 organizations

Delta Lake connector for streaming
data from Kafka into Delta tables.

/® Delta Rust h

50 contributors | 26 organizations

Delta Lake connector written
natively in Rust, with Python and

\ /

Ruby bindings.
AN 4

/@ website h

7 contributors | 3 organizations

Delta Lake website and
documentation built on Gatsby.js

Kframework. /

How to contribute

Refer to “Good First Issues”
Engage in Slack #contributors

Check out delta.io

DATA+AI

SUMMIT 2022

D

detaleeans

total load and query performance

(lower is better) - 1.7x faster than
lceberg

- 4.3x faster than Hudi

—
o
[7}
)
~—
[
o
=i
©
—
=}
o
—
]
—
o
—

Delta 1.2.0 Iceberg 0.13.1 Hudi0.11.1

https://databeans-blogs.medium.com/delta-vs-iceberg-vs-hudi-reassessing-performance-cb8157005eb0

Join the community today!

O go.delta.io/github

&
..... go.delta.io/slack

y go.delta.io/twitter

DELTA LAKE

delta.io

©2022 Databricks Inc. — All rights reserved

https://delta.io
https://github.com/delta-io/delta
https://go.delta.io/delta-users
https://go.delta.io/delta-users

Learn more about Delta 2.0

Tuesday, June 28th

e 10:30am | Delta Lake 2.0 AMA

« 11:40am | Streaming/Lakehouse
Best Practices AMA

* 2:50pm | Diving into Delta Lake 2.0

S%%;@%abricks Inc. — All rights reserved

Wednesday, June 29th

e 11:40am | Delta Committers AMA

* 4:00pm | Delta Lake Open Source
Contributor Happy Hour at the
Intercontinental Hotel

« 6:00pm | DAIS22 Meetup:
Delta Lake Committers Meet
and Greet (and birthday party!)

