
1

Gerhard Brueckl
Cloud Data Architect @ paiqo GmbH

Deep-Dive 
into 

Delta Lake

https://www.paiqo.com/


gerhard@gbrueckl.at

@gbrueckl

blog.gbrueckl.at

https://github.com/gbrueckl
www.paiqo.com

DatabricksPS

Databricks VSCode

PowerBI Connector

mailto:gerhard@gbrueckl.at
http://www.paiqo.com/
https://www.powershellgallery.com/packages/DatabricksPS
https://paiqo.sharepoint.com/sites/Marketing/Shared%20Documents/General/Platform/Data%20&%20AI%20Platform.pptx?web=1
https://github.com/delta-io/connectors/tree/master/powerbi


Agenda

• What is Delta Lake?

• What is the Delta Log?

• How does it Work?

• File & Storage Management

• Streaming

• Properties

• Conclusion & Lessions Learned

3



What is Delta Lake?

4



What is Delta Lake?
https://delta.io

Delta Lake is an open-source storage framework that enables building a
Lakehouse architecture with compute engines including Spark, PrestoDB, 

Flink, Trino, and Hive and APIs for Scala, Java, Rust, Ruby, and Python.

5

• ACID compliant transactions
• Optimistic Concurrency Control

• Support for UPDATE / MERGE

• Time-Travel

• Schema enforcement and 
evolution

• Batch & Streaming

• 100% compatible with Spark

https://delta.io/
https://databricks.com/wp-content/uploads/2020/08/p975-armbrust.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf


What is Delta Lake?
https://delta.io

6

• Everything is stored in one folder
• Meta-data
• Transaction log / Delta Log
• Data

• Could basically Copy & Paste whole Delta table

• Supports any storage sub-system

• Consumer only needs location

https://delta.io/


What is the Delta Log?

7



What is the Delta Log?
The Transactional Layer 

8

• Contains
• Table schema + changes

• References to files
• Metadata and metrics

• Stored as JSON and Parquet

• One file/version per transaction

• Allows [optimistic] concurrency control

• Used for time-travel, streaming, …



What is the Delta Log?
DESCRIBE HISTORY

9



Processing of a simple Query

10

Query is received by 
processing engine

Find latest checkpoint 
file using the 
_last_checkpoint file 
(if exists)

Read Transaction files 
(JSON) after the last 
checkpoint are

Return results

Processing engine reads 
_delta_log

Read the last 
checkpoint file 
(.parquet)

Read data files 
(.parquet) referenced 
by checkpoint and 
transactions



How does Delta Lake work?

11



DML Operations - UPDATE

12

Product Price

Notebook 900 €

PC 1,500 €

Tablet 500 €

part-01
(3 rows)

part-01
(3 rows)

part-02
(3 rows)

UPDATE DimProduct
SET Price = 1300
WHERE Product = 'PC'

Product Price

Notebook 900 €

PC 1,300 €

Tablet 500 €

"add": { "part-01.parquet", ... } "remove": { "path": "part-01.parquet", ... },
"add": { "path": "part-02.parquet", ... }

0000.json 0001.json

U
se

r
_d

el
ta

_l
og

St
or

ag
e



DML Operations - DELETE

13

Product Price

Notebook 900 €

PC 1,300 €

Tablet 500 €

part-01
(3 rows)

part-01
(3 rows)

part-02
(3 rows)

DELETE FROM DimProduct
WHERE Product = 'PC'

Product Price

Notebook 900 €

Tablet 500 €

U
se

r
_d

el
ta

_l
og

St
or

ag
e

"remove": { "path": "part-01.parquet", ... },
"add": { "path": "part-02.parquet", ... }

"remove": { "path": "part-02.parquet", ... },
"add": { "path": "part-03.parquet", ... }

0001.json 0002.json

part-02
(3 rows)

part-03
(2 rows)

00
00
.j
so
n



DML Operations - INSERT

14

Product Price

Notebook 900 €

Tablet 500 €

part-01
(3 rows)

part-01
(3 rows)

part-02
(3 rows)

INSERT INTO DimProduct
VALUES ('Monitor', 200)

Product Price

Notebook 900 €

Tablet 500 €

Monitor 200 €

U
se

r
_d

el
ta

_l
og

St
or

ag
e

"remove": { "path": "part-02.parquet", ... },
"add": { "path": "part-03.parquet", ... }

"add": { "path": "part-04.parquet", ... }
0002.json 0003.json

part-02
(3 rows)

part-03
(2 rows)

00
00
.j
so
n

00
01
.j
so
n

part-03
(2 rows)

part-04
(1 row)



DML Operations

15

• Operations are logged in _delta_log
• Old files are logically(!) removed
• New files are added

• Most operations create new files! Even a DELETE can!

Can create A LOT of files!



File & Storage Management

16



Data Management - VACUUM

17

Product Price

Notebook 900 €

Tablet 500 €

Monitor 200 €

part-01
(3 rows)

VACUUM DimProduct

Product Price

Notebook 900 €

Tablet 500 €

Monitor 200 €

U
se

r
_d

el
ta

_l
og

St
or

ag
e

"add": { "path": "part-04.parquet", ... }
0004.json 0005.json

part-02
(3 rows)

part-03
(2 rows)

00
00
.j
so
n

..
.

00
03
.j
so
n

part-03
(2 rows)

part-04
(1 row)

part-04
(1 row)

{"VACUUM START “, … "numFilesToDelete”: 2, ... }

0006.json
{"VACUUM END “, … “numDeletedFiles”: 2, ... }



Data Management - OPTIMIZE

18

Product Price

Notebook 900 €

Tablet 500 €

Monitor 200 €

OPTIMIZE DimProduct

Product Price

Notebook 900 €

Tablet 500 €

Monitor 200 €

U
se

r
_d

el
ta

_l
og

St
or

ag
e

{"VACUUM END “, … “numDeletedFiles”: 2, ... }
0006.json 0007.json

part-03
(2 rows)

00
00
.j
so
n

..
.

00
05
.j
so
n

part-03
(2 rows)

part-04
(1 row)

part-04
(1 row)

part-05

(3 rows)

“remove": { "path": "part-03.parquet", ... }
“remove": { "path": "part-04.parquet", ... }
"add": { "path": "part-05.parquet", ... }



VACUUM
• Physically removes unreferenced 

files older than X days

• Never touches files of latest 
version of Delta table!

Data Management

19

OPTIMIZE
• Collapse small files into bigger 

files

• Clustering / Ordering

• Improve query performance
OPTIMIZE events
[WHERE date = 20200101]
[ZORDER BY (eventType)]

VACUUM events
[RETAIN num HOURS] 
[DRY RUN]



Data Management
VACUUM and OPTIMIZE

• VACUUM DRY RUN
• Only shows first 1000 files to be deleted

• Use SCALA to get the actual number of files to be removed!

• Can take a long time!

• OPTIMIZE
• works per partition level

• Duplicates data!

20



Data Management

21

RESTORE
• Restores a previous state of the 

Delta table

• At version or timestamp

• Meta-data only operation

• Creates a new version

CLONE
• SHALLOW or DEEP

• Forks Delta Log 
• DEEP: copies data files
• SHALLOW: references data files

• Ideal for testing

RESTORE events 
TO TIMESTAMP AS OF 
'2022-05-03'

CREATE TABLE
events_clone
SHALLOW CLONE events;



Data Management
RESTORE and CLONE

• You can RESTORE as often as you want
• To rollback another RESTORE

• RESTORE does not create any new [data] files

• DEEP Clones are incremental and can be used for Backup

22



Partitioning

24



Partitioning

25

• Delta Tables can be partitioned
• For ETL performance (usually on Bronze, Silver)
• For query performance (usually on Gold)

• Goal: touch as few partitions as possible/necessary
• ETL and Query performance can conflict
• Explicitly specify Partitioning columns 

• Partition by Time [and ?]

Basics



Partitioning

26

• Avoid over-partitioning!
• < few 1000s partitions

• Single partition should be > 1 GB

• Use generated columns
• EventTimestamp -> partition by CAST(EventTimestamp AS DATE)

• Delta engine will [try to] push filters on EventTimestamp down to partition

• Used to separate transactions and processing jobs
• Explicitly specify partitions you touch (e.g. MERGE target)!

• Check Delta Log history for query predicates!

Advanced

https://docs.databricks.com/delta/delta-batch.html#use-generated-columns


Partitioning

27

• Physical .parquet file does 
not contain the partitioning-
columns!

• path could point anywhere!

• You do not need to specify all partitioning columns sequentially!

Advanced

_delta_log Entry



Streaming

28



Streaming

29

• Delta Lake can be used as source and target for streaming

• It’s technically still [micro-]batches
• As is Spark Streaming

• Streaming works on a file-level

• Files are processed in order of 
• Version/Transaction number
• File index (part-XXXXX…snappy.parquet)

Basics



Streaming

30

• Checkpoints
• Track state of what has already been processed from source

• One checkpoint per source
• Could stream from same source multiple times using different checkpoints

• MERGE only with foreachBatch()

• Control the Trigger/Batch size!

• Avoid Trigger.Once

• Can stop/resume stream at any time 

Advanced



Delta Lake 
Table Properties

31



Delta Lake Table Properties

32

• Can be defined on different levels

• Table Properties
• delta.autoOptimize.optimizeWrite

• spark.databricks.delta.properties.defaults.optimizeWrite
(default for new tables)

• Configured Settings during Execution
• spark.databricks.delta.optimizeWrite.enabled

• Execution settings have priority over table properties!



Delta Lake Table Properties

33

• delta.appendOnly

• delta.autoOptimize.autoCompact

• delta.autoOptimize.optimizeWrite

• delta.deletedFileRetentionDuration

• delta.logRetentionDuration

• delta.dataSkippingNumIndexedCol

Important Table Properties to know



Delta Lake Table Properties

34

• Use defaults for commands

• Define exceptions on table level

→ No need to use individual commands per table

• Changing table properties are also a Delta transaction



Conclusion
&

Lessons Learned

35



Conclusion
Take Aways

• Delta Lake can solve a lot of problems for you

• File management is crucial

• Data maintenance jobs are mandatory

• Use table properties 

36



Conclusion
References

• The internals of Delta Lake by Jacek Laskowski
https://books.japila.pl/delta-lake-internals/

• Delta Transaction Log Protocol
https://github.com/delta-io/delta/blob/master/PROTOCOL.md

37

https://pl.linkedin.com/in/jaceklaskowski
https://books.japila.pl/delta-lake-internals/
https://github.com/delta-io/delta/blob/master/PROTOCOL.md


38

Gerhard Brueckl
Cloud Data Architect @ paiqo.com 

Thank you

https://paiqo.com/

