
Supercharge Your Data
Analytical Tool with a Rusty
Query Engine

Andrew Lamb
Staff Engineer, InfluxData

Apache Arrow PMC

DataFusion and
Apache Arrow

Daniël Heres
Data Engineer, GoDataDriven

Apache Arrow PMC

Introduction
Your Speakers

Staff Engineer @ InfluxData

Previously

● Query Optimizer @ Vertica, Oracle
Database server, embedded Compilers

● Chief Architect + VP Engineering roles
at ML startups

Andrew

Data/ML Engineer @ GoDataDriven

Previously

• Data / ML Engineer @ bol.com
• Startups

2

Daniël

Why should you
care?

3
Andrew

Recent Proliferation of Big Data systems

4

…

Recent Proliferation of Databases

5

DB

6

What is going on?
COTS → Totally Custom

7

IT FANG

“Buy and Operate”

● Buy software from
vendors

● Operate on your own
hardware, with
sysadmins

“Build and Operate”

● Write software for, and
operate all components

● Optimized for exact needs

✓
Current Trend

“Assemble and Operate”

● Assemble from open
source technologies

● Operate on resources
in a public cloud

Apache Arrow
Multi-language toolkit for Processing and Interchange

Founded in 2016

Apache Software Foundation

Low level / foundational technology to build fast and
interoperable analytic systems

Open standard, implementations in 12+ languages

Adopted widely in industry products and open
source projects

8

“DataFusion is an extensible query
execution framework, written in Rust,
that uses Apache Arrow as its
in-memory format.”

- DataFusion Website

DataFusion: A Query Engine

9

https://arrow.apache.org/datafusion/user-guide/introduction.html

DataFusion: A Query Engine

SQL Query

SELECT status, COUNT(1)
FROM http_api_requests_total
WHERE path = '/api/v2/write'
GROUP BY status;

Data
Batches

DataFrame

ctx.read_table("http")?
 .filter(...)?
 .aggregate(..)?;

Data Batches

Catalog information:
tables, schemas, etc

10

Implementation timeline for a new
Database system

Client
API

In memory
storage

In-Memory
filter + aggregation

Durability /
persistence

Metadata Catalog +
Management

Query
Language
Parser

Optimized /
Compressed
storage

Execution on
Compressed
Data

Joins!

Additional Client
Languages

Outer
Joins

Subquery
support

More advanced
analytics

Cost
based
optimizer

Out of core
algorithms

Storage
Rearrangement

Heuristic
Query
Planner

Arithmetic
expressions

Date / time
Expressions

Concurrency
Control

Data Model /
Type System

Distributed query
execution

Resource
Management

“Lets Build
a Database”

🤔

“Ok now this
is pretty
good”

😐

“Look mom!
I have a
database!”

😃
Online
recovery

Window functions

11

But for Databases
🤔

12

LLVM-like Infrastructure for Databases

Inputs

Logical Plan Execution Plan

Plan Representations
(DataFlow Graphs)

Expression Eval

Optimizations /
Transformations

Optimizations /
Transformations

HashAggregate

Sort

…

Optimized Execution
Operators

(Arrow Based)

Join

Data
(Parquet, CSV, statistics, …) DataFusion

Query
(SQL, code, DataFrame, …)

Code
(UDF, UDA, etc)

Resources
(Cores, memory, etc)

13

DataFusion: Totally Customizable

Inputs

Logical Plan Execution Plan

Plan Representations
(DataFlow Graphs)

Expression Eval

Optimizations /
Transformations

Optimizations /
Transformations

HashAggregate

Sort

…

Optimized Execution
Operators

(Arrow Based)

Join

Data
(Parquet, CSV, statistics, …) DataFusion

Query
(SQL, code, DataFrame, …)

Code
(UDF, UDA, etc)

Resources
(Cores, memory, etc)

Extend ✅

Extend ✅

Extend ✅Extend ✅

Extend ✅

Extend ✅

Extend ✅

Extend ✅

14

DataFusion Project Growth

15

5.
0.
0

6.
0.
0 7.

0.
0

8.
0.
0

 N
um

be
r o

f U
ni

qu
e

C
on

tri
bu

to
rs

Date

DataFusion Project Growth

16https://star-history.com/#apache/arrow-datafusion&Date

https://star-history.com/#apache/arrow-datafusion&Date

DataFusion Milestones: Time to Mature

17

5+ year labor of love

Dec 2016 Initial
DataFusion Commit By
Andy Grove

Feb 2019 Donation to
Apache Arrow

Apr/May 2022:
Subqueries

Apr 2021 Ballista is
donated to Apache
Arrow

2020-2021: (hash) joins,
window functions,
performance &
parallelization, etc.

Mar 2018 Arrow in Rust
started, DataFusion
switches to Arrow

Nov 2021
DataFusion Contrib

Overview of
Apache Arrow
DataFusion

18
Daniël

From Query to Results

ExecutionPlanLogicalPlan

Optimize Optimize

Execute!Query / DataFrame

19

From Query to Results
an example

20

select

count(*) num_visitors,

job_title

from

visitors
where

city = "San Francisco"

group by

job_title

1

2

3

4

5

6

7

8

9

10

From Query to Results
datafusion package available via PyPI

21

visitors = ctx.table("visitors")

df = (

 visitors.filter(col("city") == literal("San Francisco"))

 .aggregate([col("job_title")], [f.count(literal(1))])

)

batches = df.collect() # collect results into memory (Arrow batches)

1

2

3

4

5

6

7

8

9

10

From Query to Results

ExecutionPlan

Optimize Optimize

Execute!Query / DataFrame LogicalPlan

22

Logical Plan represents the what

Initial Logical Plan

SQL is parsed, then translated into a initial Logical Plan.

23

Projection: #COUNT(UInt8(1)) AS num_visitors, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=None

select count(*) num_visitors, job_title

from visitors

where city = "San Francisco"

group by job_title

visitors = ctx.table("visitors")

df = (

 visitors.filter(col("city") == literal("San Francisco"))

 .aggregate([col("job_title")], [f.count(literal(1))])

)

 (Read plan from bottom to top)

Let's Optimize!

ExecutionPlan

Optimize

Execute!Query / DataFrame LogicalPlan

Optimize

24

• Massively speed up execution times (10x, 100x, 1000x) by rewriting
queries to a equivalent, optimized version

• 14 built-in optimization passes in DataFusion, adding more each version
• Add custom optimization passes

Let's Optimize!
Projection Pushdown

Minimizing IO (especially useful for formats like Parquet), processing

25

Projection: #COUNT(UInt8(1)) AS num_visitors, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=None

num_visitors

Let's Optimize!
Projection Pushdown

Minimizing IO (especially useful for formats like Parquet), processing

26

Projection: #COUNT(UInt8(1)) AS num_visitors, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=Some([0, 1])

projection_push_down

Projection: #COUNT(UInt8(1)) AS num_visitors, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=None

num_visitors

Let's Optimize!
Filter Pushdown

Minimizing IO (especially useful for formats like Parquet), processing

27

Projection: #COUNT(UInt8(1)) AS n, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=Some([0, 1])

num_visitors

Let's Optimize!
Filter Pushdown

Minimizing IO (especially useful for formats like Parquet), processing

28

filter_push_down

Projection: #COUNT(UInt8(1)) AS n, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=Some([0, 1]), partial_filters=[#visitors.city = Utf8("San Francisco")]

num_visitors

Projection: #COUNT(UInt8(1)) AS n, #visitors.job_title
 Aggregate: groupBy=[[#visitors.job_title]], aggr=[[COUNT(UInt8(1))]]
 Filter: #visitors.city = Utf8("San Francisco")
 TableScan: visitors projection=Some([0, 1])

Let's Create...
The ExecutionPlan

Optimize

Execute!Query / DataFrame LogicalPlan ExecutionPlan

Optimize

29

The Execution Plan represents the where and how

The Initial Execution Plan

30

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 HashAggregateExec: mode=Partial, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 FilterExec: city@1 = San Francisco
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

And... Optimize!

Execute!Query / DataFrame LogicalPlan

Optimize Optimize

ExecutionPlan

31

Optimize
CoalesceBatches: Avoiding small batch size

32

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 HashAggregateExec: mode=Partial, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 FilterExec: city@1 = San Francisco
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

Optimize
CoalesceBatches: Avoiding small batch size

33

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 CoalesceBatchesExec: target_batch_size=4096
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 CoalesceBatchesExec: target_batch_size=4096
 FilterExec: city@1 = San Francisco
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

coalesce_batches

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 HashAggregateExec: mode=Partial, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 FilterExec: city@1 = San Francisco
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

Optimize
Repartition: Introducing parallelism

34

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 CoalesceBatchesExec: target_batch_size=4096
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 CoalesceBatchesExec: target_batch_size=4096
 FilterExec: city@1 = San Francisco
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

Optimize
Repartition: Introducing parallelism

35

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 CoalesceBatchesExec: target_batch_size=4096
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 CoalesceBatchesExec: target_batch_size=4096
 FilterExec: city@1 = San Francisco
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

repartition

ProjectionExec: expr=[COUNT(UInt8(1))@1 as number_visitors, job_title@0 as job_title]
 HashAggregateExec: mode=FinalPartitioned, gby=[job_title@0 as job_title], aggr=[COUNT(UInt8(1))]
 CoalesceBatchesExec: target_batch_size=4096
 RepartitionExec: partitioning=Hash([Column { name: "job_title", index: 0 }], 16)
 CoalesceBatchesExec: target_batch_size=4096
 FilterExec: city@1 = San Francisco
 RepartitionExec: partitioning=RoundRobinBatch(16)
 CsvExec: files=[./data/visitors.csv], has_header=true, limit=None, projection=[job_title, city]

Getting results
Return record batches (or write results)

36

Query / DataFrame LogicalPlan

Optimize

ExecutionPlan Execute!

Optimize

Arrow Batches

DataFusion Features

● Mostly complete SQL implementation (aggregates, joins, window
functions, etc)

● DataFrame API (Python, Rust)
● High performance vectorized, native, safe, multi-threaded execution
● Common file formats: Parquet, CSV, JSON, Avro
● Highly extensible / customizable
● Large, growing community driving project forward

37

SQL Support
https://arrow.apache.org/datafusion/user-guide/sql/sql_sta
tus.html#supported-sql

Projection (SELECT), Filtering (WHERE), Ordering (ORDER BY), Aggregation
(GROUP BY)

Aggregation functions (COUNT, SUM, MIN, MAX, AVG, APPROX_PERCENTILE, etc)

Window functions (OVER .. ([ORDER BY ...] [PARTITION BY ..])

Set functions: UNION (ALL), INTERSECT (ALL), EXCEPT

Scalar functions: string, Date/time,... (basic)

Joins (INNER, LEFT, RIGHT, FULL OUTER, SEMI, ANTI)

Subqueries, Grouping Sets

38

https://arrow.apache.org/datafusion/user-guide/sql/sql_status.html#supported-sql
https://arrow.apache.org/datafusion/user-guide/sql/sql_status.html#supported-sql

39

Extensibility
Customize DataFusion to your needs

User Defined Functions

User Defined Aggregates

User Defined Optimizer passes

User Defined LogicalPlan nodes

User Defined ExecutionPlan nodes

User Defined TableProvider

User Defined FileFormat

User Defined ObjectStore

Systems Powered
by DataFusion

40
Andrew

FLOCK
https://github.com/flock-lab/flock

● Overview:
○ Low-Cost Streaming Query Engine on FaaS Platforms
○ Project from UMD Database Group, runs streaming queries on AWS Lambda (x86

and arm64/graviton2).

● Use of DataFusion
○ SQL API:
○ DataFrame API: To build plans
○ Optimized native plan execution

41

https://github.com/flock-lab/flock

ROAPI
https://roapi.github.io/

● Overview:
○ read-only APIs for static datasets without code
○ columnq-cli: run sql queries against CSV files

● Use of DataFusion
○ SQL API:
○ DataFrame API: (to build plans for GraphQL)
○ File formats: CSV, JSON, Parquet, Avro
○ Optimized native plan execution

42

https://roapi.github.io/docs/

VegaFusion
https://vegafusion.io/

● Overview:
○ Accelerates execution of (interactive) data

visualizations
○ Compiles Vega data transforms into

DataFusion query plans.

● Use of DataFusion:
○ DataFrame API: To build plans
○ UDFs: to implement some Vega expressions
○ Optimized native plan execution

43

https://vegafusion.io/

Cube.js / Cube Store
https://cube.dev/

● Overview:
○ Headless Business Intelligence
○ cubestore pre-aggregation storage layer

● Use of DataFusion (fork)
○ SQL API (with custom extensions)
○ Custom Logical and Physical Operators
○ UDFs: custom functions
○ Optimized native plan execution

44

https://cube.dev/
https://github.com/cube-js/cube.js/blob/master/rust/cubestore/README.md

InfluxDB IOx
https://github.com/influxdata/influxdb_iox

● Overview:
○ In-memory columnar store using object storage, future

core of InfluxDB; support SQL, InfluxQL, and Flux
○ Query and data reorganization built with DataFusion

● Use of DataFusion:
○ Table Provider: Custom data sources
○ SQL API
○ PlanBuilder API: Plans for custom query language
○ UD Logical and Execution Plans
○ UDFs: to implement the precise semantics of influxRPC
○ Optimized native plan execution

45

https://github.com/influxdata/influxdb_iox

Coralogix
https://coralogix.com/

● Overview:
○ Stateful streaming analytics with machine learning enables teams to monitor and

visualize observability data in real-time before indexing

● Use of DataFusion:
○ Table Provider: custom data source
○ User Defined Logical and Execution Plans: to implement a custom query language
○ User Defined ObjectStore: for queries over data in object storage
○ UDFs: for working with semi-structured data
○ Optimized native plan execution

46

https://coralogix.com/

blaze-rs
https://github.com/blaze-init/blaze

● Overview:
○ High performance, low-cost native execution layer for Spark: execute the physical

operators with Rust
○ Translates Spark Exec nodes into DataFusion Execution Plans

● Use of DataFusion
○ Optimized native plan execution
○ HDFS Object Store Extension

47

https://github.com/blaze-init/blaze

Ballista Distributed Compute
https://github.com/apache/arrow-ballista

● Overview:
○ Spark-like distributed Query Engine (part of Arrow Project)
○ Adds distributed execution to DataFusion plans

● Use of DataFusion:
○ SQL API
○ DataFrame API
○ Optimized native plan execution
○ File formats: CSV, JSON, Parquet, Avro

48

https://github.com/apache/arrow-ballista

What’s Next?

49
Daniël

Future Directions

● Embeddability
○ More regular releases to crates.io, more modularity

● Broader SQL features
○ Subqueries, more date/time functions, struct / array types

● Improved Performance
○ Query directly from Object Storage
○ More state of the art tech: JIT, NUMA aware scheduling, hybrid row/columnar exec

● Ecosystem integration
○ FlightSQL, Substrait.io
○ Databases

● GPU support

50

Come Join Us
We ❤ Our Contributors

● Contributions at all levels are encouraged and welcomed.
● Learn Rust!
● Learn Database Internals!
● Have a great time with a welcoming community!

More details:

https://arrow.apache.org/datafusion/community/communication.html

51

https://arrow.apache.org/datafusion/community/communication.html

52

Thank you
arrow.apache.org/datafusion
github.com/apache/arrow-datafusion

Andrew Lamb
Staff Engineer, InfluxData

Apache Arrow PMC

Daniël Heres
Data Engineer, GoDataDriven

Apache Arrow PMC

https://arrow.apache.org/datafusion
https://github.com/apache/arrow-datafusion

53

Backup Slides

54

Thank You!
arrow.apache.org/datafusion

github.com/apache/arrow-datafusion

Andrew Lamb
Staff Engineer,
InfluxData

Apache Arrow
PMC

Daniël Heres
Data Engineer,
GoDataDriven

Apache Arrow
PMC

https://arrow.apache.org/datafusion
https://github.com/apache/arrow-datafusion

DataFusion / Arrow / Parquet

Parquet

Arrow

sqlparser-rs

DataFusion

A Virtuous Cycle
Increased Use of Drives Increased Contribution

57

Increased use of
open source systems

Increased capacity
for maintenance and
contribution

DataFusion, and Apache Arrow are key open source technologies
for building interoperable open source systems

delta-rs
https://github.com/delta-io/delta-rs

● Overview:
○ Native Delta Lake implementation in Rust

● Use of DataFusion
○ Table Provider API: allows other DataFusion users

to read from Delta tables

58

DISCLAIMER: Not yet cleared / verified with project team

https://github.com/delta-io/delta-rs

Cloudfuse Buzz
https://github.com/cloudfuse-io/buzz-rust

● Serverless cloud-based query engine
○ map using cloud functions (AWS Lambda)
○ aggregate using containers (AWS Fargate)

● Project (expected to be) continued from june

59

DISCLAIMER: Not yet cleared / verified with project team

https://github.com/cloudfuse-io/buzz-rust

dask-sql
https://github.com/dask-contrib/dask-sql

● Overview:
○ TBD

●
● Use of DataFusion:

○ WIP https://github.com/dask-contrib/dask-sql/issues/474

60

DISCLAIMER: Not yet cleared / verified with project team

https://github.com/dask-contrib/dask-sql
https://github.com/dask-contrib/dask-sql/issues/474

Apache Arrow Analytics Toolkit
Where does DataFusion fit?

61

Parquet (“Disk”) Arrow (“Memory”)

Compute
Kernels

Arrow Flight

Arrow FlightSQL DataFusion

Data Formats

Low Level
Calculations +
Interchange

Runtime
Subsystems

IPC

C ABI

Analytics /
Database
Systems

C++ Query Engine

Analytic systems built using some of this stack

Native
Implementations

Language
Bindings

Query Engines
What is it and why do you need one?

1. Add SQL or DataFrame interface to your application’s data
2. Implement a custom query language / DSL
3. Implement a new data analytic system
4. Implement a new database system (natch)

Maps Desired Computations: SQL and DataFrame (ala Pandas)

To Efficient Calculation: projection pushdown, filter pushdown, joins,
expression simplification, parallelization, etc

62

datafusion-python
https://github.com/datafusion-contrib/datafusion-python

● Overview:
○ Python dataframe library (modeled after pyspark)

● Use of DataFusion
○ SQL API
○ DataFrame API
○ File formats: CSV, JSON, Parquet, Avro
○ Optimized native plan execution

63

DISCLAIMER: Not yet cleared / verified with project team

https://github.com/datafusion-contrib/datafusion-python

Common Themes
Come for the performance, stay for the features (?)

Native execution

Native (non JVM) of Spark/Spark like behavior

SQL interface

Projects are leveraging properties of Rustlang

SQL / DataFrame API

64

Better, Faster, Cheaper

The DataFusion Query Engine is part of the commoditization of advanced
analytic database technologies

Transform analytic systems over the next decade

65

Better Faster Cheaper

Andrew’s Notes

Proposal: Data + AI Summit talk

Desired Takeaways:

1. If you need a query engine (in Rust?), you should use DataFusion

Thesis: DataFusion is part of a larger trend (spearheaded by Apache Arrow) in the
commoditization of analytic database technologies, which will lead to many faster / cheaper /
better analytic systems over the next decade

Other decks for inspiration:

DataFusion: An Embeddable Query Engine Written in Rust

xA Rusty Introduction to Apache Arrow and how it Applies to a Time Series Database

2021-04-20: Apache Arrow and its Impact on the Database industry.pptx
66

https://docs.google.com/document/d/1wTVfBhpzvfO-p10_pa3rxARxJTrUeeO-zc04zxz0RxQ/edit#heading=h.vic51yrj1hw3
https://docs.google.com/presentation/d/1owNlmpNpC2-eBd-jEYRCt0L8_sW4PWYx70gqnFC0twM/edit?usp=sharing
https://docs.google.com/presentation/d/1BuG1XA9CrM-KjFGMzFEcomsu06whX8ZegXh2VjuqYAs/edit?usp=sharing
https://docs.google.com/presentation/d/1lXsYsPjeowey7H9wIOQUnUjsCo_282Zv/edit#slide=id.p1

67

Instructions: Read me!
Getting started with our slide template

When using this template, create your new slides at the very top of the
slide order, above this slide. Explore the advice and example slides below to
find useful layouts and graphics to pull into your design. When your slide
deck is complete, delete this slide and every slide below it.

There are great baseline
slides in this template, but
it may not have everything
you need. Don’t be afraid
to craft your own layouts!
Just pay attention to the
font and grid guidelines,
and take advantage of
starter shapes.

Get creative

Use text hierarchy to
create order and keep your
content scannable. No
walls of text! Try to keep
headlines short.

Make it scannable

Presentation best practices
Less is more

Don’t try to cram
everything onto a limited
number of slides. More
slides with less text per
slide is easier to digest.

Clarity over density

68

69

Font Guidance
Font selection

All text in our slide decks should use
one of two available event brand
fonts: DM Sans or DM Mono.

If you do not see these fonts in your font
selection menu, they can be added by
selecting “More fonts” and searching for
“dm.” Click on DM Sans and DM Mono, then
hit OK.

1

2

70

Font Guidance (Cont.)
Font sizing

Using consistent type sizing is a
good way to help your slides feel
uniform. When selecting type sizes,
try to stick to multiple of 8, with the
exceptions of 12 and 20 as
in-betweens.

DATA+AI Summit

12 DATA+AI Summit

DATA+AI Summit

DATA+AI Summit
DATA+AI Summit
DATA+AI Summit
DATA+AI Summit
DATA+AI Summ

16

20

24

32

40

56

64

71

Grid Guidance
Keep it orderly

Your presentation template has a 12
column grid to help you organize the
elements on your slides. When laying
out objects, consider using the grid
to help.

Toggle the grid visibility by navigating
to View > Guides > Show Guides.

72

Color Guidance
Keep it on brand

When customizing charts or adding other visual
elements, do your best to stay within our defined
event color palette. This will ensure that all your
content looks great together and doesn’t clash with
the slide template design.

Always use black text when placing content over a
colored background. The only exception is when
using a black background. Any color text is
acceptable on black.

10121E 00B6E0 85DDB5 F16047

EDEEF1 8FDDEF AFE9CF F3A89B

73

Example Slides

Eighteen colorful title slide
options with varying shapes

74

Add your Name
Add your title, company

Choose Your
Title Slide

Eighteen colorful title slide
options with varying shapes

75

Add your Name
Add your title, company

Choose Your
Title Slide

Eighteen colorful title slide
options with varying shapes

76

Add your Name
Add your title, company

Choose Your
Title Slide

Basic Content Slide
Your all-purpose zone

Use this slide as a starting point for crafting your own layouts, or for simple
text slides.

77

Activate Dark Mode
Mix in black slides to add contrast and variety

Or make your whole presentation dark!

78

Insert your charts or images
Take advantage of the content panels

79

If you want to insert a gif or
other image from the web,
simply navigate to
Insert > Image > by URL.

Crop and resize your image to fit
within content panels, if you’re
feeling fancy.

Insert Image by URL

“With just a few adjustments to text size and
alignment, you can use the basic content slide for

other types of content such as quotes.”

80

Andrew Pons
Slide Designer

81

Column A Column B Column C Column D Column E Column F

Row A You can create
simple tables to
help organize
information.

Row B

Row C

Row D

Row E

Row F

Row G

Row H

Timeline Style One

82

Your subtitle here

Timeline Item Timeline Item Timeline Item Timeline Item

Timeline Item Timeline Item Timeline Item

Timeline Style Two

83

Your subtitle here

Your gantt chart item

Q1 Q2 Q3 Q4

Your gantt chart item

Your gantt chart item

Your gantt chart item

Your gantt chart item

Your gantt chart item

Your gantt chart item

Your gantt chart item

Single Column
Content Tile

Use this panel for content, images, diagrams, or whatever else you want to include. You can
use the line tool to divide this panel into multiple sections if you want.

Multi-purpose

84

Two Column
Content Tile

Use these slides for comparing two topics
or just for splitting your content into
multiple pieces.

Multi-purpose

85

Use these slides for comparing two topics
or just for splitting your content into
multiple pieces.

Multi-purpose

Column 3Column 2

Three Column

Column 1

86

Four Column

Column 1

87

Column 4Column 3Column 2

Half Panel
Right aligned

88

This space is great for supporting text that
compliments whatever content is inside
the panel.

Open Content

This space can be for text content, images,
diagrams, or whatever you need

Panel Content

Half Panel
Left aligned

89

This space can be for text content, images,
diagrams, or whatever you need

Panel Content

This space is great for supporting text that
compliments whatever content is inside
the panel.

Open Content

⅔ Panel
Right aligned

90

This space can be for text content, images, diagrams, or
whatever you need

Panel Content

This space is great for
supporting text that
compliments whatever
content is inside the panel.

Open Content

⅔ Panel
Left aligned

91

This space can be for text content, images, diagrams, or
whatever you need

Panel Content

This space is great for
supporting text that
compliments whatever
content is inside the panel.

Open Content

Code Display
Paste snippets

92

select

count (*),

age

from

visitors
where location="SanFrancisco"

group by job_title

1

2

3

4

5

6

7

8

9

10

Use breaker
slides to divide
your deck into
sections

93

94

Use breaker
slides to divide
your deck into
sections

Starter Shapes
Copy and paste these wherever you need them

95

Floating panel for text or graphics

❤ ⚠ ★

✓ ✗

Medium pill label

SMALL PILL LABEL

✓ ✗

Medium pill label

SMALL PILL LABEL

Logos
Partners and cloud platforms

96

Logos
Open source projects

97

