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Debuggability + iteration
are critical to Al engineering.




Debuggability + iteration
are enabled by data-centric
development.
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Today’s Al Engineering
Challenges



85% of organizational data is unstructured,
unlabeled, and not ready for Al use

Structured

® Unstructured

Expanding Al's Impact With Organizational Learning,
MIT Sloan Management Review and Boston Consulting Group, October 2020



Training data development is iterative—
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Training data development is iterative—
nhot a one-time process

Update model
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Define problem > — O OO‘O > Deploy solution
ning data

Update data

e Refine class definitions
e Address mo del errors
e Add new data

e Update label schema
e Adapt to drift




Al applications are about
more than the model

o

Models



Al applications require
data operations
? to get to production
Q
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Deep Learning is not yet enough to be the singular solution to most real-
world automation. You need significant prior-injection, post-processing and
other engineering in addition.

Hence, companies selling DL models as an API have slowly turned into
consulting shops.
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Al engineering is shifting from
model-centric to data-centric



Data-centric principles for Al engineering
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Down with the end-to-end mega model!
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Where are the mistakes coming from?

S —— : $NOK —» “POSITIVE?”
T~ » SGME —» “NEGATIVE?”
E2E Model
5 Classified,
‘;C“me”t Linked
(Tweets) Entities

Debuggability + introspection is a must-have!



Decompose complex models into a pipeline of
modular, debuggable building blocks.
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Enable local (per-component) and global
(end-to-end) evaluation and iteration.

NOK “POSITIVE?”
—> # 0> —» —b 6\? o O%—) o NOK —auies

$GME —> ‘“NEGATIVE”

Entity Sentiment Entity

Reducer
Tagger Classifier Linker

Document 51% F1 88% F1 92% F1 95% F1
(Tweets)

74% FA1

\ \ / / ‘

“Local” Operator Scores

“Global” Application Scores
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Each building block performs a dataframe transformation...

Subject | Body Timestamp Subject | Body Timestamp Prediction

—
Free Feb 02, 2021 —» —» Free Feb 02,2021 | SPAM
money

Classifier

Document DataFrame Classified Document DataFrame



Building blocks are modular!

Subject

Body Timestamp

Free

Feb 02,2021

Document DataFrame

—

assifier

Subject | Body | Timestamp Prediction
Free Feb 02,2021 SPAM
money

Classified Document DataFrame

Heuristic Classifier: “free money” in subject - SPAM




Building blocks are modular!

Subject

Body

Timestamp

Free

Feb 02, 2021 —»

Document DataFrame

Learned Classifier:
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assifier
.predict (df)

Subject | Body | Timestamp Prediction
Free Feb 02,2021 SPAM
money

Classified Document DataFrame




Building blocks are modular!

Subject

Body

Timestamp

Free

Feb 02,2021

—

Document DataFrame

Start simple... then swap in ML as needed!

assifier

Subject | Body | Timestamp Prediction
Free Feb 02,2021 SPAM
money

Classified Document DataFrame
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Iteration is bottlenecked by manual data labeling

Outsource to labeling vendors Label with in-house experts

Ty =) 4 | o —
el A e s

+ Active learning, model assisted labeling, etc.

® Privacy challenges @ Slow
(® Lacks domain expertise $r High opportunity cost of domain experts
& Not auditable or governable &2 Not auditable or governable

W Hard to adapt N\ Hard to adapt



Create labeling functions, not manual labels

= =

10-100X
Faster
Label

programmatically

Training data
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Create labeling functions, not manual labels

©Snorkel Al Private & Confidential

“If “free money” is found
in x.email...”

— fx

10-100X
Faster
Label

Programmatically

abe
programmatically




Snorkel Flow operationalizes
organizational knowledge for Al

Legacy Manual labels | -. o
: 10-100X
Z Faster

S8 SME knowledge : ——
Basic 8 Ontologies/KBs [ -«++-u.tn R >
5o Rule-based systems :
Label
Programmatically

(@ Automated insights

Advanced =% Largelanguage models |- -« - - .. '

[J Zero-shot learning

Label
programmatically
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Rapidly build training datasets
with labeling functions

Labeling Training Dataset

Functions

Ratner et. al., NeurlPS’16;
Bach et. al., ICML17;
Ratner et. al., VLDB’18;
Ratner et. al., AAAI'19;

Varma et. al., ICML19; etc.

1% @ &
o 2@0;00.:
o, 09 ©
®¢ ,0° @.ﬁ.
® o0 s o
® o0 o ® e
ML Model

https://snhorkel.ai/programmatic-labeling/



Programmatic labeling enables rapid iteration,
not complete manual relabeling

ision
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Social Media Monitoring






Goal: Monitor public company sentiment on Twitter.
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First pass...

Document
(Tweets)

E2E Model
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First pass...

Document
(Tweets)

E2E Model

>
> SNOK —» “POSITIVE?”

» SGME —» “NEGATIVE”

Classified,
Linked
Entities

62 F1




During MLE standup...

Where are
— = g $NOK | mistakes coming
— > from?
—~ » SGME —» ~_£GATIVE”
E2E Model
Document Classified,
Linked
(Tweets) SR /\— A

Are we failing
to generalize Are we

to new misclassifying
companies? sentiment?




Decompose!

NOK —» “POSITIVE”
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Document
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Entity
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$NOK —» “POSITIVE”

Named Entity Tagger | E> - o~ & b I

ot
—p # O> —p —
Entity
Tagqger
Document Company
Tweets Mentions

8 “] scraped a list of Fortune 500 companies last quarter!”



o o $NOK —» “POSITIVE”
> O > B » »
Dictionary-based A R
Entity Sentiment Entity Reducer
Tagger Classifier Linker
o
Named Entity Tagger o
(Tweets)

Document Company
Tweets Mentions

Extract spans based on dictionary keyword matches



Sentiment Classifier o o

Tagger Classifier

Document
(Tweets)

. O DNEE

Entity Reducer
Linker

$NOK —» “POSITIVE”

$GME

» “NEGATIVE”

» POS

R I
— —’I'%'I—" —

» POS
» NEG
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Mentions Mentions
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N E X : : i C\? R | $NOK —> “POSITIVE

— e_ s e % $GME —> “NEGATIVE”
Entity Sentiment Entity Reducer

Sentiment Classifier ocunen
—_— - » POS
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Sentiment
Classifier
Company Classified
Mentions Mentions

Classify sentiment using contextual words + off-the-shelf model



Entity Linker
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Al

Reducer

SNOK —» “POSITIVE”
$GME —» “NEGATIVE?”

b
> $NOK

» SGME

Linked

Company Entities




$NOK —» “POSITIVE”
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uzzy-matchin
Entity Sentiment Entity Reducer
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Entity Linker
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Fuzzy match to link company mentions to standard stock tickers
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Postprocessor to take the most common sentiment prediction per entity



How do we know where to focus our attention?

Document
(Tweets)
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Entity
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“Global” Application Scores



Swap out Named Entity Tagger...

Train a learned

sequence model

Document Company
Tweets Mentions

Replace dictionary with learned sequence tagging model!



Iterate on sequence tagging data with
programmatic labeling

(ex) If span ends with “Inc|Co”...

@ If span matches F500 dict.json... @@ @
........ ®
> & ® P
® O

If span returned by ZSL Model with prompt
“What are the named companies?”... ® ® 00



After component-wise debugging, our E2E scores improve!

Learned
Entity Tagger
(o)
Document Ll
(Tweets) o\

Sentiment Entity
Classifier Linker
90% F1 93% F1

of a
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\
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“Local” Operator Scores

.
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§ SNOK —» “POSITIVE?”
SGME —» “NEGATIVE?”
Reducer

96% F1 84% Ff \

I

Improved Global Scores



Data-centric principles for Al engineering

&2 Down with the end-to-end mega model!

Long live end-to-end (evaluation and iteration)

«©

$ob ML should not be the universal default

Rapidly iterate with programmatic labeling



Data-centric principles for Al engineering
software engineering

&2 Down with the end-to-end mega model!

«©

(i

* single responsibility principle /| modularity

Long live end-to-end (evaluation and iteration)
* debuggability + introspection

ML should not be the universal default
* start simple! avoid premature optimization...

Rapidly iterate with programmatic labeling
* anticipate change [ incremental development



