

## Pipeline Migration

A Case Study in Rearchitecting an On-Prem Pipeline in the Cloud

ORGANIZED BY Sdatabricks

Duke Mary Clair Thompson Data Engineering Team Lead, Duke University

1

- Several data pipelines handled by Spark (on-prem)
  - Spark cluster going away
    - Physically leaving data center!
- Need to migrate workflows to Azure
- For this talk:
  - STINGAR logs pipeline

#### • <u>STINGAR</u>

- Shared Threat Intelligence for Network Gatekeeping and Automated Response
  - Partnership among universities for sharing information on network attacks
  - Use data for analytics, reporting and machine learning
- Data aren't huge
  - ~162MB/day shared partner attack data
- Analysts need:
  - Timely access to (lightly processed) raw data (within a few hours)
  - Aggregations (day-level)

#### DATA+AI SUMMIT 2022

#### Sample log

{

"ids\_type": "network", "dest\_ip": "172.19.0.2", "type": "cowrie.sessions", "loggedin": ["root", "E5efEHW65"], "src\_port": 49686, "@timestamp": "2022-05-19T17:08:21.199Z", "command": "lscpu | grep Model", "tags": ["beats\_input\_raw\_event"], "src\_ip": "43.154.138.122", "vendor\_product": "Cowrie", "severity": "high", "dest\_port": 2222, "protocol": "ssh", "app": "cowrie", "transport": "tcp", "signature": "command attempted on cowrie honeypot", "sensor": "nrao-forwarder"



- What we needed to replicate:
  - Log Ingestion
  - Processing
    - Field extractions
    - Formatting
    - Aggregations
  - Storage
    - Cleaned raw data
    - Aggregated views
  - Analytics platform with access to underlying data

## **Requests for Updated Pipeline**

- Easy for analysts to search raw data by timestamp
- Spark cluster for analysis
- Ease transition for analysts
  - new environment (cloud vs on-prem)
  - experience similar to Jupyter notebooks
  - allow them to recycle Spark code



- Logstash -> HDFS
  - json
  - 1 file/minute (regardless of logged timestamp)
- Rewrites:
  - Spark job
    - ran ever 5 minutes
    - performed field extractions/cleaning
    - final files written to parquet
    - filenames based on logged timestamp
      - down to 5-minute level
      - 2020-06-12\_13:15:00/part-<UID>.parquet



- Some problems:
  - decision to store in parquet made before fleshing out full pipeline
    - parquet not necessary for STINGAR data
  - none of the tools in the rest of the pipeline could read/write parquet
  - rewrite process ran into problems with field inconsistencies
  - hard to get throttling correct
    - 5-minute process might still be running when next one starts
    - complicated renaming scheme with potential for files left in zombie state
    - had to hard-code throttling constants on a per-pipeline basis



- More problems:
  - Processed logs written out based on detailed timestamp
    - Files dated down to 5 minute intervals
      - Intended to make searching files by timestamp easy for analysts
      - Is this necessary? Isn't this what Spark is for?
  - All processing/aggregation handled by Spark
    - Not a huge amount of data
    - Do we really need Spark for this part of the pipeline?

| Needs                             | Choices |
|-----------------------------------|---------|
| <ul> <li>Log Ingestion</li> </ul> |         |
| Processing                        |         |
| • Storage                         |         |
| Analytics                         |         |
|                                   |         |
|                                   |         |
|                                   |         |
|                                   |         |

#### Needs

- Log Ingestion
- Processing
- Storage
- Analytics

#### Choices

- filebeats/logstash
  - forward on-prem logs -> cloud
- Azure Eventhubs
  - pub/sub

#### Needs

- Log Ingestion
- Processing
- Storage
- Analytics

#### Choices

#### • Azure functions

- serverless compute
- field extractions/cleaning
- write processed logs to blob storage
- chose Premium plan
  - pre-warmed instances
  - avoid cold start problem

#### Needs

- Log Ingestion
- Processing
- Storage
- Analytics

#### Choices

- Azure Blob (data lake)
  - inexpensive
  - no current use case for structured data/sql querying
- Store in json format
  - relatively small amount of data
  - prefer human-readable files
  - easier to deal with field inconsistencies

#### Needs

- Log Ingestion
- Processing
- Storage
- Analytics

#### Choices

- Azure Databricks
  - Spark access for analysts

## **Initial Cloud Architecture**



## Complications

- Can't tune batch size between pub/sub and function layer so...
  - lots of tiny files in blob storage
  - slow to read/process
- Try append blobs
  - problem: Spark can't read these!

## **Updated Architecture**





#### **Function Details**

- Function 1
  - field extractions
  - minor cleanup
  - add timestamped filename based on log time

#### **Core Function Code**

#### Function 1

| 1  | def process_json(event: func.EventHubEvent) -> dict:                        |
|----|-----------------------------------------------------------------------------|
| 2  | data = event.get_body().decode('utf-8')                                     |
| 3  | event_data_json = json.loads(data)                                          |
| 4  | timestamp = event_data_json.get('@timestamp', dt.now()))                    |
| 5  | logging.info(f'Python EventHub trigger processed an event for {timestamp}') |
| 6  | ts = dt.strptime(timestamp, '%Y-%m-%dT%H:%M:%S.%fZ′)                        |
| 7  | filename_timestamp = dt.strftime(ts, "%Y-%m-%d/%H")                         |
| 8  | updated_event = dict(event_data_json, **{"filename": filename_timestamp})   |
| 9  | return updated_event                                                        |
| 10 |                                                                             |
|    |                                                                             |

#### **Function Details**

- Function 2
  - all the processing is already done so....
    - break up data by timestamped filename field
    - write final files
      - timestamp filenames to hour level

## Advantages of Updated Architecture

#### New pipeline significantly more stable

- pipeline hiccups are rare....
  - data scientists trust that the data is up-to-date and reliable
- although they do happen
  - straightforward recovery
- no collisions
  - 10-minute processes could handle many orders of magnitude more data
- More flexible architecture -> many more use case possibilities
  - data augmentation
  - aggregations
  - external jobs relying on data

#### DATA+AI SUMMIT 2022

## **Pipeline Enhancements**

#### Databricks layer

- significantly more flexible than in-house Jupyter notebooks solution
  - ad-hoc augmentation of base data
  - integration with external packages and tooling
- GitLab integration
  - CI/CD definition and function template allow for seamless development/testing
    - dev branch deploys code to test function
    - main deploys to production function
    - extremely reusable!
- Networking/access control
  - All components live in dedicated cloud virtual network
    - peered to Duke's network
    - multiple layers of access control
      - easy to provide access to specific datasets



#### Advantages of Move to the Cloud

- Fit solution to the problem—not vice versa
- Flexibility
  - add/swap out pipeline components
  - scale compute on the fly
  - fine-grained authentication controls
  - on-demand Spark cluster
    - for analysis (where we need it)
    - not for processing (where we don't)
- Appropriate tooling
  - pub/sub
  - lightweight serverless compute
  - Databricks

#### "This Azure Databricks setup definitely restored my interest in STINGAR"

--Gagan Kaur

Data Scientist



#### Lessons Learned

- Don't blindly replicate existing infrastructure
  - Could handle cleaning/processing without Spark
  - Filenames dated to 5-minute intervals unnecessary/added overhead
  - Parquet not necessary here
    - Use json to deal with changing schema
- Don't discount existing ideas
  - Eventually used the original 2-pronged approach for processing/storage
    - albeit with updates!



#### **Outcome and Related Work**

- Data from new pipeline used for:
  - machine learning on attack trends
  - long-term analysis and <u>reporting</u>
  - information-sharing among partner universities
- Applied our learning to harder problem
  - near-real time DNS monitoring
    - higher throughput
      - ~ 16.5GB compressed data/day
    - lower latency
      - need logs within 5-10 minutes of ingest

#### DATA+AI SUMMIT 2022

# Thank you

Duke Mary Clair Thompson Data Engineering Team Lead