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Background

• Several data pipelines handled by Spark (on-prem)
• Spark cluster going away 

• Physically leaving data center!

• Need to migrate workflows to Azure

• For this talk:
• STINGAR logs pipeline
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Background

• STINGAR
• Shared Threat Intelligence for Network Gatekeeping and Automated Response

• Partnership among universities for sharing information on network attacks

• Use data for analytics, reporting and machine learning

• Data aren’t huge
• ~162MB/day shared partner attack data

• Analysts need:
• Timely access to (lightly processed) raw data (within a few hours)

• Aggregations (day-level)

https://stingar.security.duke.edu/
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{

"ids_type": "network", 

"dest_ip": "172.19.0.2", 

"type": "cowrie.sessions", 

"loggedin": ["root", "E5efEHW65"], 

"src_port": 49686, 

"@timestamp": "2022-05-19T17:08:21.199Z", 

"command": "lscpu | grep Model", 

"tags": ["beats_input_raw_event"], 

"src_ip": "43.154.138.122", 

"vendor_product": "Cowrie", 

"severity": "high", 

"dest_port": 2222, 

"protocol": "ssh", 

"app": "cowrie", 

"transport": "tcp", 

"signature": "command attempted on cowrie honeypot", 

"sensor": "nrao-forwarder"

}

Sample log
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Background

• What we needed to replicate:
• Log Ingestion

• Processing
• Field extractions

• Formatting

• Aggregations

• Storage
• Cleaned raw data

• Aggregated views

• Analytics platform with access to underlying data
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Requests for Updated Pipeline

• Easy for analysts to search raw data by timestamp

• Spark cluster for analysis

• Ease transition for analysts
• new environment (cloud vs on-prem)

• experience similar to Jupyter notebooks

• allow them to recycle Spark code
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Original Pipeline

STINGAR

Capture logs

Filebeats

Monitor for new 
logs/forward to 
Logstash

Logstash

Write logs to 
HDFS

HDFS

Store raw, 
cleaned and 
aggregated logs

Spark

Perform field 
extractions and 
aggregations

Jupyter

Analytics 
platform
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Original Pipeline

• Logstash -> HDFS
• json

• 1 file/minute (regardless of logged timestamp)

• Rewrites:
• Spark job

• ran ever 5 minutes

• performed field extractions/cleaning

• final files written to parquet

• filenames based on logged timestamp

• down to 5-minute level

• 2020-06-12_13:15:00/part-<UID>.parquet



9

Original Pipeline

• Some problems:
• decision to store in parquet made before fleshing out full pipeline

• parquet not necessary for STINGAR data

• none of the tools in the rest of the pipeline could read/write parquet

• rewrite process ran into problems with field inconsistencies

• hard to get throttling correct
• 5-minute process might still be running when next one starts

• complicated renaming scheme with potential for files left in zombie state

• had to hard-code throttling constants on a per-pipeline basis
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Original Pipeline

• More problems:
• Processed logs written out based on detailed timestamp

• Files dated down to 5 minute intervals

• Intended to make searching files by timestamp easy for analysts

• Is this necessary? Isn’t this what Spark is for?

• All processing/aggregation handled by Spark
• Not a huge amount of data

• Do we really need Spark for this part of the pipeline?



Architectural Decisions

• Log Ingestion

• Processing

• Storage

• Analytics

Needs
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Choices
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• filebeats/logstash
• forward on-prem logs -> cloud

• Azure Eventhubs
• pub/sub

Choices
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• Azure functions
• serverless compute

• field extractions/cleaning

• write processed logs to blob storage

• chose Premium plan

• pre-warmed instances

• avoid cold start problem

Choices
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• Azure Blob (data lake)
• inexpensive

• no current use case for structured data/sql
querying

• Store in json format
• relatively small amount of data

• prefer human-readable files

• easier to deal with field inconsistencies

Choices
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• Azure Databricks
• Spark access for analysts

Choices



Initial Cloud Architecture
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Logstash Eventhub
Azure 

Function
Storage 
Account

Databricks

Forward logs Message queue Processes logs 
and writes to 
storage account

Archives logs Hooked up to 
storage account 
for analytics on 
top of data

Aggregates data 
in batch and 
stores
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Complications 

• Can’t tune batch size between pub/sub and function layer so...
• lots of tiny files in blob storage

• slow to read/process

• Try append blobs
• problem: Spark can’t read these!



Updated Architecture

Eventhub Function 2 Storage 
Account

Reads append 
blobs, breaks up 
by logged 
timestamp, 
writes out for 
analysis.
Runs every 10 
minutes.

Function 1

Processes logs 
and appends to 
a file named by 
time of ingest
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Function Details

• Function 1
• field extractions

• minor cleanup

• add timestamped filename based on log time



Core Function Code
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def process_json(event: func.EventHubEvent) -> dict: 

data = event.get_body().decode('utf-8’) 

event_data_json = json.loads(data) 

timestamp = event_data_json.get('@timestamp', dt.now())) 

logging.info(f'Python EventHub trigger processed an event for {timestamp}’) 

ts = dt.strptime(timestamp, '%Y-%m-%dT%H:%M:%S.%fZ’) 

filename_timestamp = dt.strftime(ts, "%Y-%m-%d/%H") 

updated_event = dict(event_data_json, **{"filename": filename_timestamp})

return updated_event
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Function Details

• Function 2
• all the processing is already done so....

• break up data by timestamped filename field

• write final files

• timestamp filenames to hour level
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Advantages of Updated Architecture

• New pipeline significantly more stable
• pipeline hiccups are rare....

• data scientists trust that the data is up-to-date and reliable

• although they do happen
• straightforward recovery

• no collisions
• 10-minute processes could handle many orders of magnitude more data

• More flexible architecture -> many more use case possibilities
• data augmentation

• aggregations

• external jobs relying on data 
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Pipeline Enhancements

• Databricks layer
• significantly more flexible than in-house Jupyter notebooks solution

• ad-hoc augmentation of base data
• integration with external packages and tooling

• GitLab integration
• CI/CD definition and function template allow for seamless development/testing

• dev branch deploys code to test function
• main deploys to production function

• extremely reusable!

• Networking/access control
• All components live in dedicated cloud virtual network

• peered to Duke’s network
• multiple layers of access control

• easy to provide access to specific datasets
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Advantages of Move to the Cloud

• Fit solution to the problem—not vice versa

• Flexibility
• add/swap out pipeline components
• scale compute on the fly
• fine-grained authentication controls
• on-demand Spark cluster

• for analysis (where we need it)

• not for processing (where we don’t)

• Appropriate tooling
• pub/sub
• lightweight serverless compute
• Databricks



“This Azure Databricks setup definitely restored my interest in STINGAR”
--Gagan Kaur

Data Scientist
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Lessons Learned

• Don’t blindly replicate existing infrastructure
• Could handle cleaning/processing without Spark

• Filenames dated to 5-minute intervals unnecessary/added overhead

• Parquet not necessary here
• Use json to deal with changing schema

• Don’t discount existing ideas
• Eventually used the original 2-pronged approach for processing/storage

• albeit with updates!
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Outcome and Related Work

• Data from new pipeline used for:
• machine learning on attack trends

• long-term analysis and reporting
• information-sharing among partner universities

• Applied our learning to harder problem
• near-real time DNS monitoring

• higher throughput
• ~ 16.5GB compressed data/day

• lower latency

• need logs within 5-10 minutes of ingest

https://stingar.security.duke.edu/statistics/
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