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AGENDA

• ABI

• Previous state + paradigm shift

• Data Platform Products

• How to build a model 

• Next steps and Lessons learned



Anheuser-Busch InBev
World’s largest brewery

50 
countries
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200 
breweries

40 
verticalized
operations

$55b

revenue

48%

market 
share

6m
customers 

globally

630 
beer 

brands 

582 m hL

volume



Previous State
Legacy Architecture
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Problems to be solved

• Governance

• Sustainability 

• Centralization attempt

Technical gaps
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PARADIGM 
SHIFT



Data Platform
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• Deliver value to the users in a consistent and automated manner

• Reproducibility, so algorithms are easy to maintain, in a single, collaborative 

ecosystem

• Reduce technical debt, so data scientists are more concerned with solving 

the business problem than with deploying and maintaining infrastructure

• Tech product vision

Cutting-edge architecture designed with the following principles:



Data Platform
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Standing out
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Collaborative and 
centralized library

Code duplication

Read, write 

Quincy
Airflow abstraction 

YAML files to DAGs

ETL and batch models

Fast, accessible and reliable 
architecture 



DATA INGESTION PLATFORM
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• ~ 400 users

• ~ 5k deploys

• ~ 300 Tb

Easy data for all



DATA INTELLIGENCE PLATFORM
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Empower users on DS/ML tools and techniques  

• > 150 direct users

• ~ 10 ML prod

• ~ 50 ML dev



DATA INTELLIGENCE PLATFORM
Data Science Template
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DATA ACCESS PLATFORM
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• ~ 170 users

• > 10k queries

• ~ 1 mi API requests/week

Democratize access to information



DATA GOVERNANCE LAYER
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Making sure we are sustainable and compliant
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How to build a 
model (e2e) using
the platform?



Data Ingestion
Worry about the data, not the process
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Creating your DAG 
Worry about the data, not the process
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dag:

dag_id: 123456

dag_class: “source”

dag_type: “connector”

schedule_interval: “@hourly”

system: “payments”

country: “Brazil”

datasets:

- name: “client_payment”

active: True

domain: “clients” 

entity: “entity”

task_owner: “Renata C”

start_date: # datetime(YYYY,MM,DD)

connection_id: “client_payment_id”

metadata: metadata.json

+ Data pre-processing



Good to go!
Show your results or build your model
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Good to go!
Worry about the model, not the infra
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Accessing the DS template
Worry about the model, not the infra
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Data & business understanding 
How to read and write data with our library
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Going ML
Feature Engineering
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Going ML
Creating experiment
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Going ML
Model training
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Going ML
Predict
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Deploying – DS Template (core)
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Scheduling your task 
Creating your DAG
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dag:
dag_id: ”clients_churn"
dag_type: “predict”
dag_class: "analytical"
country: "Brazil"

context: ”Commercial"
domain: ”Clients"
owner: ”Renata C"
schedule_interval: # @daily, @hourly, @weekly or cron syntax
start_date: # datetime(YYYY,MM,DD)

product_location: ”Commercial/Clients/Products"

tasks:
- module: "main"
num_workers: "1"
cluster: "Standard_DS3_v2"
libraries:

- cloudpickle==1.3.0.  
- pyarrow==4.0.1 



Deploying – Batch (Quincy)

28



Deploying - API
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Enjoy the actionable insights
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Next steps
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• Delta implementation

• API abstracting 

• Metrics platform



Lessons learned
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• Governance since day 1

• Don’t productionize kludge – specially without documentation (data 
swamp)

• Support tools for scalable growth
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The amazing team!
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renata.castanha@ambev.com.br

renatacgcastanha

Thank you

mailto:renata.castanha@ambev.com.br

