
Building production-ready
recommender systems
with feature stores

bit.ly/feast-recsys-talk

Danny Chiao

Engineering Lead at Tecton / Feast (former lead at Google)

Agenda

• Background
• Recommender systems intro
• What is a feature store / Feast?

• Recommender systems challenges
• How teams typically run recommender systems
• Optimizing performance / cost
• Correctness

• Deploying Feast
• Key takeaways

Background

Recommender systems

• Use cases: e-commerce, media
streaming, social, ride-hailing,
biomedical, etc

• Who: data engineers, data scientists,
platform engineers

• Trend: Batch predictions → online
predictions

What is Feast (FEAture STore)?

• A component to manage E2E lifecycle
of a feature, including transformations
and serving

• Helps ML platform teams build a
platform to democratize feature
engineering

• Manages ML lineage & metadata
• Generates training data
• Encourages feature re-use

Recommender
system
challenges

Batch recommender systems
Precompute recommendations for all users + load at request time

Popularity model
(baseline)

Easiest, most interpretable

Linear methods
(e.g. KNN, SVD, SLIM, LightFM)

Easy + ok interpretable, more
complex feature engineering

Deep learning
(e.g. rank candidate items)

Complex + not very
interpretable, less complex

feature engineering

Moving more online
Moving online doesn’t necessarily need a lot of new infrastructure

Popularity model
(baseline)

Need: fresh sets of most
popular items

Linear methods
(e.g. KNN, SVD, SLIM, LightFM)

Need: fresh user x item
interaction histories

Deep learning
(e.g. rank candidate items)

Need: fresh features for users +
items AND request time data

Moving more online

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

At serving time, need a fresh
user history vector to get
started with online inference
(+ maybe resolving cold start
problems)

https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

Moving more online

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

At serving time, need a fresh
user history vector to get
started with online inference
(+ maybe resolving cold start
problems)

ALSO: Can use new
meaningful features that rely
on data available at request
time (e.g. session data,
timestamp of request,
location of request, etc)

https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

Examples of where Feast fits in

Generating fresh online features

• Unifying batch + stream sources
• low latency online retrieval (for online

inference)
• historical retrieval (for training dataset

generation & batch scoring)

• Abstracting away data model for
writing and reading into the low
latency online store

Examples of where Feast fits in

Re-using features

• store.get_historical_features(
 features=[
 “fv:time_since_last_purchase”]
 ...)

• store.get_online_features(
 features=[
 “fv:time_since_last_purchase”]
 ...)

Model versioning

• store.get_X_features(features=store.get_f
eature_service(“ranking_model_v2”))

Examples of where Feast fits in

DS author production-ready features

• Iterate quickly and reduce training / serving skew

• On demand features

• Combining entity values, request data, batch
(pre-computed) features, and streaming
features

• e.g. user_has_bought_category_before

• e.g. generate fresh user history by combining
batch + stream features

• Stream transformations:

• e.g. geohash features

• WIP: Batch transformations:

• e.g. batch joins last_n_item_categories

Operational
challenges with
moving online

Operational challenges
Considerations when moving online

Among other requirements, an online recommender system often needs:

• fresh features (write heavy)
• Why? e.g. user session activity for all users, precomputed features have delays

• Different events update different features

• low latency access to features for many entities (read heavy)
• Why? e.g. for a given user, need to rank 100s to 1000s of items

• Typically, the faster the recommendation, the more likely users accept them.
• The less time spent on data, the more time the model can spend inferring.

• low cost
• Why? e.g. reads, writes, storage can be expensive, reducing value of moving online

Optimizing for the above can introduce significant data quality issues too.

Building a low latency online store
Consideration 1 (of 4)

1. Balancing read vs write requirements
a. update features independently (e.g. from

streams)
b. reading features for a specific model

quickly

Consideration

⭆ Collocate features from a stream /
event together in both online store &
offline store

⭆ Collocate features needed for a
specific model

Example strategies

Building a low latency online store
Consideration 2 (of 4)

2. Managing type
conversions for online
store
a. Data source types and

Pandas / Python types
(in data scientist
notebook)

b. Conversions are
expensive

Consideration

Building a low latency online store
Consideration 3 (of 4)

3. Optimizing for batch retrieval
a. Large batch sizes (i.e. number of entities to

score in the sample request)
b. Online store specific optimizations.

Consideration

⭆ Co-locating entities
⭆ Caching
⭆ E.g. Redis pipelines & mget vs hmget

vs hgetall

Example strategies

Example: fetch features for all stores in a region

Building a low latency online store
Consideration 4 (of 4)

4. Cost
a. Write cost
b. Read cost
c. Storage cost

Consideration

⭆ incremental data processing
⭆ in-memory or out-of-process caching
⭆ online store TTL (warning: multiple

models)

Example strategies

Correctness

Feature iteration
How to iterate on features safely

1. How to avoid breaking model versions
in production

2. Reproducible model training

Challenges

⭆ Feature + model lineage / versioning
⭆ Dev vs staging vs prod folders or

branches
⭆ CI/CD checks + lints to enforce

immutability
⭆ Feast SavedDatasets or using DVC to

manage retrieved training data

Example strategies

Blog: how DKatalis tackles this

https://medium.com/dkatalis/common-feature-store-workflow-with-feast-6698ea666fe8

Handling bad data
Data quality, data cleaning, drift

● upstream systems change

● faulty feature transformation logic or
messy data that has not been properly
cleaned

● streams can publish bad data (or fail to
publish data)

Example sources of bad data

⭆ Implement data quality monitoring
• e.g. see Feast DQM and versioned datasets

via SavedDatasets
• e.g. Great Expectations integration
• can easily go wrong with false alerts

⭆ Visualize feature statistics
⭆ Fallback to old / default values or

impute values for missing / faulty data.

Mitigations

Source: Feast data quality monitoring tutorial

https://docs.feast.dev/tutorials/validating-historical-features

Feast x RecSys

Feast

• Feast is an open-source pluggable
feature store that connects to

• Batch sources (via Spark, BigQuery,
Redshift, Snowflake, Azure Synapse
Analytics, Hive)

• Stream sources (via push API or Spark)

• Active community with 3k+ Slack and
bi-weekly community calls

• Goal: to simplify & reduce overhead of
generating and managing ML features

Deploying Feast

• Airflow for scheduled materialization of
online features from batch sources

• Stream processors leverage DS defined
transforms or push to online store directly

• Embed SDK or deploy feature server
• Serverless (e.g. Using Feast’s AWS Lambda

integration)
• Kubernetes (e.g. Feature Server docs)

• Versioning models with feature service
• Pushing features in via push API
• Everything is pluggable

https://docs.feast.dev/reference/alpha-aws-lambda-feature-server
https://docs.feast.dev/reference/alpha-aws-lambda-feature-server
https://docs.feast.dev/reference/feature-servers/python-feature-server

Takeaways

1. Incrementally move batch RecSys online (e.g make
fresher features). Prove business value first.

2. Managing fresh features in an online store is not trivial

• E.g. low latency reads vs write throughput, batch reads,
iterating safely, bad data, cost

3. Feast abstracts complexity away, and is pluggable so
you can incrementally solve more issues

4. Consistent + performant streaming & on demand
transformations are key to online RecSys

Questions?

This talk

• https://bit.ly/feast-recsys-talk

Useful resources

• https://feast.dev/
• https://github.com/feast-dev/feast
• https://slack.feast.dev/

https://bit.ly/feast-recsys-talk
https://feast.dev/
https://github.com/feast-dev/feast
https://slack.feast.dev/

