

Building production-ready recommender systems with feature stores

Engineering Lead at Tecton / Feast (former lead at Google)

bit.ly/feast-recsys-talk

Danny Chiao

ORGANIZED BY 😂 databricks

Agenda

Background

- Recommender systems intro
- What is a feature store / Feast?
- Recommender systems challenges
 - How teams typically run recommender systems
 - Optimizing performance / cost
 - Correctness
- Deploying Feast
- Key takeaways

Background

Recommender systems

- Use cases: e-commerce, media streaming, social, ride-hailing, biomedical, etc
- Who: data engineers, data scientists, platform engineers
- Trend: Batch predictions → online predictions

What is Feast (FEAture STore)?

- A component to manage E2E lifecycle of a feature, including transformations and serving
- Helps ML platform teams build a platform to democratize feature engineering
- Manages ML lineage & metadata
- Generates training data
- Encourages feature re-use

Recommender system challenges

Batch recommender systems

SUMMIT 2022

Precompute recommendations for all users + load at request time

Moving more online

SUMMIT 2022

Moving online doesn't necessarily need a lot of new infrastructure

Moving more online

At serving time, need a **fresh user history vector** to get started with online inference (+ maybe resolving cold start problems)

User-item Interactions (left), Item-item Similarity (middle), and Predicted Relevance (right)

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

Moving more online

At serving time, need a **fresh user history vector** to get started with online inference (+ maybe resolving cold start problems)

ALSO: Can use new meaningful features that rely on data available at <u>request</u> <u>time</u> (e.g. session data, timestamp of request, location of request, etc)

User-item Interactions (left), Item-item Similarity (middle), and Predicted Relevance (right)

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

Examples of where Feast fits in

Generating fresh online features

- Unifying batch + stream sources
 - low latency online retrieval (for online inference)
 - historical retrieval (for training dataset generation & batch scoring)
- Abstracting away data model for writing and reading into the low latency online store

Examples of where Feast fits in

Re-using features

- store.get_historical_features(
 features=[
 "fv:time_since_last_purchase"]
 ...)
- store.get_online_features(
 features=[
 "fv:time_since_last_purchase"]
 ...)

Model versioning

 store.get_X_features(features=store.get_f eature_service("ranking_model_v2"))

Examples of where Feast fits in

DS author production-ready features

- Iterate quickly and reduce training / serving skew
- On demand features
 - Combining entity values, request data, batch (pre-computed) features, and streaming features
 - e.g. user_has_bought_category_before
 - e.g. generate fresh user history by combining batch + stream features
- Stream transformations:
 - e.g. geohash features
- WIP: Batch transformations:
 - e.g. batch joins last_n_item_categories

```
request_source=RequestSource(
    name="request_data",
    schema=[Field(name="current_time", dtype=UnixTimestamp)]
# Transforming (user, item) pair feature + request data ("current_time")
@on demand feature view(
    inputs={request_source, user_fv, item_feature},
    schema=[
      Field(name="time_since_purchased", dtype=Int64),
      Field(name="previously_purchased_item_cat", dtype=Int64),
      Field(name="purchased_item_ids", dtype=Array(Int32)),
def purchase_on_demand_features(inputs: pd.DataFrame):
   from keras.utils.np_utils import to_categorical
   import numpy as np
   df = pd.DataFrame()
  df["time_since_purchase"] = inputs["current_time"] - inputs["last_purchase_time"]
  df["previously_purchased_item_cat"] = df[["item_category", "prev_purchased_categories"]].apply(
       lambda x: x["item_category"] in x["prev_purchased_categories"],
       axis=1)
   df["purchased_item_ids"] = inputs.apply(
       lambda x: sorted(list(
           pd.unique(
               np.concatenate([x["last_1d_purchased_item_ids"], x["purchased_item_ids"]])))),
       axis=1)
   return df
```


Operational challenges with moving online

Operational challenges

Considerations when moving online

Among other requirements, an online recommender system often needs:

- fresh features (write heavy)
 - Why? e.g. user session activity for all users, precomputed features have delays
 - Different events update different features
- low latency access to features for many entities (read heavy)
 - Why? e.g. for a given user, need to rank 100s to 1000s of items
 - Typically, the faster the recommendation, the more likely users accept them.
 - The less time spent on data, the more time the model can spend inferring.
- low cost
 - Why? e.g. reads, writes, storage can be expensive, reducing value of moving online

Optimizing for the above can introduce significant data quality issues too.

Building a low latency online store Consideration 1 (of 4)

Consideration

- 1. Balancing read vs write requirements
 - a. update features independently (e.g. from streams)
 - b. reading features for a specific model quickly

Example strategies

- Collocate features from a stream / event together in both online store & offline store
- Collocate features needed for a specific model

User Metadata Features				
user_id				
country				
age				
imestamp				

1 ĩ.

Ť.

User Features user_id country last_viewed_item_category

ts_country

ts_age

age

ts_last_5_viewed_item_category

User Session Features user_id last_viewed_item_category last_transaction_amt

timestamp

User Historical Features user_id 28d_avg_transaction_amt 28d_top_item_category timestamp

Embedding features user_id user_embedding

timestamp

Building a low latency online store

Consideration 2 (of 4)

Consideration

- 2. Managing type conversions for online store
 - a. Data source types and Pandas / Python types (in data scientist notebook)
 - b. Conversions are expensive

Pandas dtype	Python type	NumPy type string_, unicode_, mixed types		
object	str or mixed			
int64	int	int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64		
float64	float	float_, float16, float32, float64		
bool	bool	bool_		
datetime64	NA	datetime64[ns]		
timedelta[ns]	NA	NA		
category	NA	NA		

	table123						
ш	lable 125	: SHARE OUT DELET					
SC	HEMA D	ETAILS PREVIEW					
Row	string_field_0	string_field_1					
1	INT64	12345					
2	NUMERIC	52000000000					
3	BIGNUMERIC	5.2e+37					
4	FLOAT65	5.4321					
5	BOOLEAN	false					
6	STRING	555					
7	BYTES	coupler_io					
8	DATE	2021-05-01					
9	DATE	2021-05-01-3.00					
10	TIME	5:59:12.0422					
11	DATETIME	2021-05-01 21:32:45					
12	TIMESTAMP	2021-05-27 8:05:01-3:00					
13	GEOGRAPHY	51.500989020415034, -0.12471081312336843					
14	ARRAY	name, 123, 2021-01-01					
15	STRUCT	555,'name'					

Building a low latency online store Consideration 3 (of 4)

Consideration

- 3. Optimizing for batch retrieval
 - a. Large batch sizes (i.e. number of entities to score in the sample request)
 - b. Online store specific optimizations.

Example strategies

- ⇒ Co-locating entities
- ⇒ Caching
- ⇒ E.g. Redis pipelines & mget vs hmget vs hgetall

Example: fetch features for all stores in a region

	Store features						
geohash	store_id	feature_1		feature_N			

Building a low latency online store

Consideration 4 (of 4)

Consideration

- 4. Cost
 - a. Write cost
 - b. Read cost
 - c. Storage cost

Example strategies

- ⇒ incremental data processing
- ⇒ in-memory or out-of-process caching
- online store TTL (warning: multiple models)

Correctness

Feature iteration

How to iterate on features safely

Challenges

- 1. How to avoid breaking model versions in production
- 2. Reproducible model training

Example strategies

- ⇒ Feature + model lineage / versioning
- Dev vs staging vs prod folders or branches
- ⇒ CI/CD checks + lints to enforce immutability
- Feast SavedDatasets or using DVC to manage retrieved training data

Handling bad data

Data quality, data cleaning, drift

Example sources of bad data

- upstream systems change
- faulty feature transformation logic or messy data that has not been properly cleaned
- streams can publish bad data (or fail to publish data)

Mitigations

- Implement data quality monitoring
 - e.g. see Feast DQM and versioned datasets via SavedDatasets
 - e.g. Great Expectations integration
 - can easily go wrong with false alerts
- ⇒ Visualize feature statistics
- Fallback to old / default values or impute values for missing / faulty data.

```
DELTA = 0.1 # controlling allowed window in fraction of the value on
```

```
@ge_profiler
```

```
def stats_profiler(ds: PandasDataset) -> ExpectationSuite:
```

```
# simple checks on data consistency
```

```
ds.expect_column_values_to_be_between(
```

"avg_speed",

min_value=0,

```
max_value=60,
```

mostly=0.99 # allow some outliers

```
)
```

```
ds.expect_column_values_to_be_between(
    "total_miles_travelled",
    min_value=0,
    max_value=500,
    mostly=0.99  # allow some outliers
    `
```

Source: Feast data quality monitoring tutorial

Feast x RecSys

Feast

- Feast is an open-source pluggable feature store that connects to
 - Batch sources (via Spark, BigQuery, Redshift, Snowflake, Azure Synapse Analytics, Hive)
 - Stream sources (via push API or Spark)
- Active community with 3k+ Slack and bi-weekly community calls
- **Goal**: to simplify & reduce overhead of generating and managing ML features

Deploying Feast

- Airflow for scheduled materialization of online features from batch sources
 - Stream processors leverage DS defined transforms or push to online store directly
- Embed SDK or deploy feature server
 - Serverless (e.g. Using Feast's <u>AWS Lambda</u> <u>integration</u>)
 - Kubernetes (e.g. Feature Server docs)
- Versioning models with feature service
- Pushing features in via push API
- Everything is pluggable

- 1. Incrementally move batch RecSys online (e.g make fresher features). Prove business value first.
- 2. Managing fresh features in an online store is not trivial
 - E.g. low latency reads vs write throughput, batch reads, iterating safely, bad data, cost
- 3. Feast abstracts complexity away, and is pluggable so you can incrementally solve more issues
- 4. Consistent + performant streaming & on demand transformations are key to online RecSys

Questions?

This talk

• <u>https://bit.ly/feast-recsys-talk</u>

Useful resources

- https://feast.dev/
- https://github.com/feast-dev/feast
- <u>https://slack.feast.dev/</u>

