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Background



Recommender systems

• Use cases: e-commerce, media 
streaming, social, ride-hailing, 
biomedical, etc

• Who: data engineers, data scientists, 
platform engineers

• Trend: Batch predictions → online 
predictions



What is Feast (FEAture STore)?

• A component to manage E2E lifecycle 
of a feature, including transformations 
and serving

• Helps ML platform teams build a 
platform to democratize feature 
engineering

• Manages ML lineage & metadata
• Generates training data
• Encourages feature re-use



Recommender 
system 
challenges



Batch recommender systems
Precompute recommendations for all users + load at request time

Popularity model 
(baseline)

Easiest, most interpretable

Linear methods 
(e.g. KNN, SVD, SLIM, LightFM)

Easy + ok interpretable, more 
complex feature engineering

Deep learning
(e.g. rank candidate items)

Complex + not very 
interpretable, less complex 

feature engineering



Moving more online
Moving online doesn’t necessarily need a lot of new infrastructure

Popularity model 
(baseline)

Need: fresh sets of most 
popular items

Linear methods 
(e.g. KNN, SVD, SLIM, LightFM)

Need: fresh user x item 
interaction histories

Deep learning
(e.g. rank candidate items)

Need: fresh features for users + 
items AND request time data



Moving more online

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs 

At serving time, need a fresh 
user history vector to get 
started with online inference 
(+ maybe resolving cold start 
problems)

https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs


Moving more online

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs 

At serving time, need a fresh 
user history vector to get 
started with online inference 
(+ maybe resolving cold start 
problems)

ALSO: Can use new 
meaningful features that rely 
on data available at request 
time (e.g. session data, 
timestamp of request, 
location of request, etc)

https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs


Examples of where Feast fits in

Generating fresh online features

• Unifying batch + stream sources 
• low latency online retrieval (for online 

inference)
• historical retrieval (for training dataset 

generation & batch scoring)

• Abstracting away data model for 
writing and reading into the low 
latency online store



Examples of where Feast fits in

Re-using features

• store.get_historical_features(
  features=[
    “fv:time_since_last_purchase”]
  ...)

• store.get_online_features(
  features=[
    “fv:time_since_last_purchase”]
  ...)

Model versioning

• store.get_X_features(features=store.get_f
eature_service(“ranking_model_v2”))



Examples of where Feast fits in

DS author production-ready features

• Iterate quickly and reduce training / serving skew

• On demand features

• Combining entity values, request data, batch 
(pre-computed) features, and streaming 
features

• e.g. user_has_bought_category_before

• e.g. generate fresh user history by combining 
batch + stream features

• Stream transformations: 

• e.g. geohash features

• WIP: Batch transformations:

• e.g. batch joins last_n_item_categories



Operational 
challenges with 
moving online



Operational challenges
Considerations when moving online

Among other requirements, an online recommender system often needs:

• fresh features (write heavy) 
• Why? e.g. user session activity for all users, precomputed features have delays

• Different events update different features

• low latency access to features for many entities (read heavy)
• Why? e.g. for a given user, need to rank 100s to 1000s of items

• Typically, the faster the recommendation, the more likely users accept them. 
• The less time spent on data, the more time the model can spend inferring.

• low cost
• Why? e.g. reads, writes, storage can be expensive, reducing value of moving online

Optimizing for the above can introduce significant data quality issues too. 



Building a low latency online store
Consideration 1 (of 4)

1. Balancing read vs write requirements
a. update features independently (e.g. from 

streams)
b. reading features for a specific model 

quickly

Consideration

⭆ Collocate features from a stream / 
event together in both online store & 
offline store

⭆ Collocate features needed for a 
specific model

Example strategies





Building a low latency online store
Consideration 2 (of 4)

2. Managing type 
conversions for online 
store
a. Data source types and 

Pandas / Python types 
(in data scientist 
notebook)

b. Conversions are 
expensive 

Consideration



Building a low latency online store
Consideration 3 (of 4)

3. Optimizing for batch retrieval
a. Large batch sizes (i.e. number of entities to 

score in the sample request)
b. Online store specific optimizations. 

Consideration

⭆ Co-locating entities
⭆ Caching
⭆ E.g. Redis pipelines & mget vs hmget 

vs hgetall

Example strategies



Example: fetch features for all stores in a region



Building a low latency online store
Consideration 4 (of 4)

4. Cost
a. Write cost
b. Read cost
c. Storage cost

Consideration

⭆ incremental data processing
⭆ in-memory or out-of-process caching
⭆ online store TTL (warning: multiple 

models)

Example strategies



Correctness



Feature iteration
How to iterate on features safely

1. How to avoid breaking model versions 
in production

2. Reproducible model training

Challenges

⭆ Feature + model lineage / versioning
⭆ Dev vs staging vs prod folders or 

branches
⭆ CI/CD checks + lints to enforce 

immutability
⭆ Feast SavedDatasets or using DVC to 

manage retrieved training data

Example strategies

Blog: how DKatalis tackles this

https://medium.com/dkatalis/common-feature-store-workflow-with-feast-6698ea666fe8


Handling bad data
Data quality, data cleaning, drift

● upstream systems change

● faulty feature transformation logic or 
messy data that has not been properly 
cleaned

● streams can publish bad data (or fail to 
publish data)

Example sources of bad data

⭆ Implement data quality monitoring
• e.g. see Feast DQM and versioned datasets 

via SavedDatasets
• e.g. Great Expectations integration 
• can easily go wrong with false alerts

⭆ Visualize feature statistics
⭆ Fallback to old / default values or 

impute values for missing / faulty data. 

Mitigations



Source: Feast data quality monitoring tutorial

https://docs.feast.dev/tutorials/validating-historical-features


Feast x RecSys



Feast

• Feast is an open-source pluggable 
feature store that connects to 

• Batch sources (via Spark, BigQuery, 
Redshift, Snowflake, Azure Synapse 
Analytics, Hive)

• Stream sources (via push API or Spark)

• Active community with 3k+ Slack and 
bi-weekly community calls

• Goal: to simplify & reduce overhead of 
generating and managing ML features



Deploying Feast

• Airflow for scheduled materialization of 
online features from batch sources

• Stream processors leverage DS defined 
transforms or push to online store directly

• Embed SDK or deploy feature server
• Serverless (e.g. Using Feast’s AWS Lambda 

integration)
• Kubernetes (e.g. Feature Server docs)

• Versioning models with feature service
• Pushing features in via push API
• Everything is pluggable

https://docs.feast.dev/reference/alpha-aws-lambda-feature-server
https://docs.feast.dev/reference/alpha-aws-lambda-feature-server
https://docs.feast.dev/reference/feature-servers/python-feature-server


Takeaways

1. Incrementally move batch RecSys online (e.g make 
fresher features). Prove business value first.

2. Managing fresh features in an online store is not trivial

• E.g. low latency reads vs write throughput, batch reads, 
iterating safely, bad data, cost

3. Feast abstracts complexity away, and is pluggable so 
you can incrementally solve more issues

4. Consistent + performant streaming & on demand 
transformations are key to online RecSys



Questions?

This talk

• https://bit.ly/feast-recsys-talk 

Useful resources

• https://feast.dev/ 
• https://github.com/feast-dev/feast  
• https://slack.feast.dev/  

https://bit.ly/feast-recsys-talk
https://feast.dev/
https://github.com/feast-dev/feast
https://slack.feast.dev/

