DATA+AI

SUMMIT 2022

duction-ready

Tecton / Feast (former lead at Google)

Agenda

Background

Recommender systems intro

What is a feature store / Feast?
Recommender systems challenges

How teams typically run recommender systems
Optimizing performance / cost
Correctness

Deploying Feast
Key takeaways

DATA+AI

SUMMIT 2022

Recommender systems

- Use cases: e-commerce, media
streaming, social, ride-hailing,

biomedical, etc
+ Who: data engineers, data scientists,
platform engineers

» Trend: Batch predictions — online
predictions

| shopify

DATA+AI

SUMMIT 2022

What is Feast (FEAture STore)?

A component to manage E2E lifecycle
of a feature, including transformations
and serving

Helps ML platform teams build a
platform to democratize feature
engineering

Manages ML lineage & metadata
Generates training data

Encourages feature re-use

DATA+AI

SUMMIT 2022

Engineer
—
= @ FEAST
> Build server that
Stream fetches features
Sources 3 R
Validate
Kafka, Kinesis Store Transform Serve and .
Monitor » K ———» > 4
\) LY ik) & .
=0 W
Prediction
E— Register and Discover Model
Batch
Sources
BigQuery, Redsbhift,
S8, GCS, Parquet
ki Szgggvzgd Define features and
features transformations
Generate
training set

Data scientist

Batch recommender systems

Precompute recommendations for all users + load at request time

4 A 4 A 4
///fﬁ\/”_“\p, \//_\\px\\ G
What is the most popular What items do other users How likely am | to buy
\\ grocery item in NY? I|ke me buy? j this item?
Popularity model Linear methods Deep learning
(baseline) (e.g. KNN, SVD, SLIM, LightFM) (e.g. rank candidate items)
Easiest, most interpretable Easy + ok interpretable, more Complex + not very
complex feature engineering interpretable, less complex
feature engineering
- AN \

DATA+AI

SUMMIT 2022

Moving more online

Moving online doesn’t necessarily need a lot of new infrastructure

4 A 4 w

/VX
What is the most popular
grocery item in NY?

O\—/\i

O

Popularity model

(baseline)

Need: fresh sets of most
popular items

/—\/

What items do other users
like me buy?
O s -

O

Linear methods
(e.g. KNN, SVD, SLIM, LightFM)

Need: fresh user x item
interaction histories

e Jiaiaa N
How likely am | to buy
this item?

OL/_/\

O

Deep learning

(e.g. rank candidate items)

Need: fresh features for users +
items AND request time data

DATA+AI

SUMMIT 2022

Moving more online

Items Items Items

SN M S © SN Mal o © | SN Wal i

1 0 1 0 0 09 09 06 08 07 02
At serving time, need a fresh . E - .
user history vector to get . x N e -
started with online inference ===l 1 1 0 1 of [x 8| "5 A los] 08 09 09 0.2
(+ maybe resolving cold start ‘ ' i
problems) o

M o o 1 o 1 | Bl | #w[o3 o5 o8 os 0.8 |

User-item Interactions (left), Item-item Similarity (middle), and Predicted Relevance (right)

Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

DATA+AI

SUMMIT 2022

https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

Moving more online

Items Items Items
SN M S © Gl Mo - & S M S ©
. . ”‘ i 1 0 1 0 0 i D [09 i " B 09 06 08 0.7 0.2-
At serving time, need a fresh m| o
user history vector to get | &R T " R R -
started with online inference ===l 1 1 0 1 o [x 8] | "5 A los] 08 09 09 02
(+ maybe resolving cold start i
problems)
o o 1 o 1 | Bl | #w[o3 o5 o8 os 08 |

ALSO: Can use new

meaningful features that rely User-item Interactions (left), Item-item Similarity (middle), and Predicted Relevance (right)
on data available at request

time (e.g. session data,

timestamp of request, ‘ - _
location of request, etc) Source: https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

DATA+AI

SUMMIT 2022

https://shopify.engineering/how-shopify-uses-recommender-systems-to-empower-entrepreneurs

Examples of where Feast fits In

Generating fresh online features

+ Unifying batch + stream sources

- low latency online retrieval (for online
inference)

- historical retrieval (for training dataset
generation & batch scoring)

+ Abstracting away data model for
writing and reading into the low
latency online store

DATA+AI

SUMMIT 2022

AAAAAA

Batch Sources

Raw
Data

Transformed
data

Snowflake, BigQuery,

Redshift, Synapse, S3, GCS

AWS Lambda Kubernetes
@ FEAST
| serve)
push ! t_online_feat Realtime
- get_online_features
_,Spof,'(‘z Online Fseature Model
Store erver Serving
)pQF;KZ[’ materialize
—— Model
X] Offline get_historical features Training /
SEETK transform Feast SDK Evaluation
Store ¥
A Batch Scoring
]
!
________________ J

Examples of where Feast fits In

Re-using features

° store.get_historical_features(

features=[
“fv:time_since_last_purchase”]

ce)
° store.get_online_features(

features=[
“fv:time_since_last_purchase”]

)

Model versioning

° store.get_X_features(features=store.get_f
eature_service("”ranking_model_v2"))

DATA+AI

SUMMIT 2022

@ FEAST

Credit Score Project v

Home
© Data Sources (3)

© Entities (3)

€ Feature Views (4)
£ Feature Services (5)

= Datasets (1)

Project: credit_scoring_aws

Welcome to your new Feast project. In this Ul, you can see Data Sources,
Entities, Feature Views and Feature Services registered in Feast.

It look like this project already have some objects registered. If you are new
to this project, we suggest starting by exploring the Feature Services, as
they represent the collection of Feature Views serving a particular model.

Note: We encourage you to replace this welcome message with more

suitable content for your team. You can do so by specifying a
project_description in your feature_store.yaml file.

Registered in this Feast project are ...

5 4 3 3

Feature Services> Feature Views—> Entities> Data Sources—>

Explore this Project

Feature Views by "experiments"
experiment-A,experiment-B,experiment-C (2)
experiment-A (1)

Feature Views by "date_added"
2022-02-7(2) 2022-02-6 (1)

Examples of where Feast fits In

DS author production-ready features Fequest_source-Requestsource(

name="request_data",
schema=[Field(name="current_time", dtype=UnixTimestamp)]

Iterate quickly and reduce training / serving skew

On demand features @on_demand_feature_view(

inputs={request_source, user_fv, item_feature},
Combining entity values, request data, batch schema=[
. Field(name="time_since_purchased", dtype=Int64),
(pre—computed) features, and Streamlng Field(name="previously_purchased_item_cat", dtype=Int64),

Field(name="purchased_item_ids", dtype=Array(Int32)),
features :
)
def purchase_on_demand_features(inputs: pd.DataFrame):

e.g. user_has_bought_category_before

from keras.utils.np_utils import to_categorical

e.g. generate fresh user history by combining

import numpy as np

batch + stream features fii= bd-Datertasel)
df["time_since_purchase"] = inputs[“current_time"] - inputs["last_purchase_time"]
Stream transformationS‘ df ["previously purchased_item_cat"] = df[["item_category", "prev_purchased_categories"]].apply(
lambda x: x["item_category"] in x["prev_purchased_categories"],
e.g. geohash features Arisell _
df ["purchased_item_ids"] = inputs.apply(
WIP: Batch transformations: Lomice e sortedEiatl

pd.unique(

np.concatenate([x["last_1d_purchased_item_ids"], x["purchased_item_ids"11)))),

e.g. batch joins last_n_item_categories

axis=1)
return df

DATA+AI

SUMMIT 2022

Operational challenges

Among other requirements, an online recommender system often needs:

fresh features (write heavy)

Why? e.g. user session activity for all users, precomputed features have delays
Different events update different features

low latency access to features for many entities (read heavy)

Why? e.g. for a given user, need to rank 100s to 1000s of items

Typically, the faster the recommendation, the more likely users accept them.
The less time spent on data, the more time the model can spend inferring.

low cost
Why? e.g. reads, writes, storage can be expensive, reducing value of moving online

Optimizing for the above can introduce significant data quality issues too.

DATA+AI

SUMMIT 2022

Building a low latency online store
Consideration 1 (of 4)

-

_

Consideration

1. Balancing read vs write requirements

a.

b.

update features independently (e.g. from
streams)

reading features for a specific model
quickly

o

Example strategies

= Collocate features from a stream /
event together in both online store &
offline store

= Collocate features needed for a
specific model

DATA+AI

SUMMIT 2022

DATA+AI

SUMMIT 2022

User Metadata Features

User Features

user_id
country
age
Atimestamp

User Session Features

user_id

country

age
last_viewed_item_category
ts_country

ts_age

ts_last_5_viewed_item_category

user_id
last_viewed_item_category
last_transaction_amt
}imestamp

User Historical Features

user_id
28d_avg_transaction_amt
28d_top_item_category
ltimestamp

Embedding features

user_id
user_embedding

timestamp

Building a low latency online store
Consideration 2 (of 4)

Consideration

2. Managing type
conversions for online

store
a. Data source types and
Pandas / Python types
(in data scientist
notebook)
b. Conversions are
expensive

DATA+AI

SUMMIT 2022

-

APACHE

Pandas dtype | Python type

object str or mixed
int64 int

float64 float

bool bool

datetime64 NA
timedelta[ns] | NA

categorv NA

ARROW>>>

NumPy type

string_, unicode_, mixed types

int_, int8, int16, int32, int64, uint8, uint16,
uint32, uint64

float_ float16, float32, float64
bool

datetime64[ns)

NA

NA

EIGSHEET.. ~ X ETABLE123 ~ X
table123 +2 SHARE @ copy
SCHEMA DETAILS PREVIEW

Row string_field 0 string_field_1

INT64
NUMERIC
BIGNUMERIC
FLOAT6S
BOOLEAN
STRING
BYTES

DATE

DATE

TIME
DATETIME
TIMESTAMP
GEOGRAPHY
ARRAY
STRUCT

12345

520000000000

5.2e+37

5.4321

false

555

coupler_io

2021-05-01
2021-05-01-3.00
5:59:12.0422
2021-05-01 21:32:45
2021-05-27 8:05:01-3:00
51.500989020415034, -0.12471081312336843
name, 123, 2021-01-01

555/name’

W DELETE

Building a low latency online store

Consideration 3 (of 4)

-

_

Consideration

3. Optimizing for batch retrieval
a. Large batch sizes (i.e. number of entities to
score in the sample request)
b. Online store specific optimizations.

Online store

. DynamoDB é redis

o

Example strategies

= Co-locating entities

= Caching

= E.g. Redis pipelines & mget vs hmget
vs hgetall

DATA+AI

SUMMIT 2022

Example: fetch features for all stores in a region

m-

DATA+AI

SUMMIT 2022

Building a low latency online store
Consideration 4 (of 4)

e w

Consideration Example strategies
4. Cost = incremental data processing

a. Write cost = in-memory or out-of-process caching

b. Read cost : I ;

= online store TTL (warning: multiple
c. Storage cost
models)

Online store

. DynamoDB é redis

- A

DATA+AI

SUMMIT 2022

Feature iteration

How to iterate on features safely

e w
Challenges Example strategies
1. How to avoid breaking model versions = Feature + model lineage / versioning
in production = Dev vs staging vs prod folders or
2. Reproducible model training branches
= CI/CD checks + lints to enforce
° B immutability
i = Feast SavedDatasets or using DVC to
— m manage retrieved training data
Blog: how DKatalis tackles this
\ y N

DATA+AI

SUMMIT 2022

https://medium.com/dkatalis/common-feature-store-workflow-with-feast-6698ea666fe8

Handling bad data

Data quality, data cleaning, drift

-

_

D 4
Example sources of bad data Mitigations
e upstream systems change = Implement data quality monitoring
)) * e.g. see Feast DQM and versioned datasets
e faulty feature transformation logic or via SavedDatasets
messy data that has not been properly - e.g. Great Expectations integration
cleaned « can easily go wrong with false alerts
. blish bad data (or fail t = Visualize feature statistics
e streams can publish bad data (or fail to
, P = Fallback to old / default values or
publish data) . .
impute values for missing / faulty data.
y €

DATA+AI

SUMMIT 2022

DELTA = 0.1 # controlling allowed window in fraction of the value on

@ge_profiler
def stats_profiler(ds: PandasDataset) -> ExpectationSuite:
simple checks on data consistency
ds.expect_column_values_to_be_between(
"avg_speed",
min_value=0,
max_value=60,

mostly=0.99 # allow some outliers

ds.expect_column_values_to_be_between(
"total_miles_travelled",

min_value=0,

max_value=500,

mostly=0.99 # allow some outliers

Source: Feast data quality monitoring tutorial

DATA+AI

SUMMIT 2022

https://docs.feast.dev/tutorials/validating-historical-features

Feast

- Feast is an open-source pluggable

feature store that connects to
- Batch sources (via Spark, BigQuery,
Redshift, Snowflake, Azure Synapse
Analytics, Hive)
- Stream sources (via push API or Spark)

+ Active community with 3k+ Slack and
bi-weekly community calls

+ Goal: to simplify & reduce overhead of
generating and managing ML features

DATA+AI

SUMMIT 2022

Engineer
—
= @ FEAST ,
> Build server that
Stream fetches features
Sources R N R
Validate
Kafka, Kinesis Store Transform Serve and .
Monitor » K ———» > 4
B 4 . .
= -
Predictic
E— Register and Discover Model recicien
Batch
Sources \
BigQuery, Redsbhift,
S8, GCS, P t
=rgue Sggggvzr:d Define features and
features transformations
Generate
training set
Data scientist
Teams running or contributing to Feast
ecmon ® 9°Jek I shopify @ EEE?:: O Google Cloud a“]gnn Postmates
W Robinhood # ~Porch FARFETCH zufily 39993 & redisions

_

Deploying Feast

- Airflow for scheduled materialization of

online features from batch sources

« Stream processors leverage DS defined
transforms or push to online store directly

+ Embed SDK or deploy feature server

- Serverless (e.g. Using Feast's AWS Lambda
integration)
« Kubernetes (e.g. Feature Server docs)

* Versioning models with feature service
» Pushing features in via push API
« Everything is pluggable

DATA+AI

SUMMIT 2022

\

eeeee }

get_online_features

AWS Lambda Kubernetes

Realtime

get_historical features

Model
Serving

Model
Training /

push
SpOfK —————— | transform f--------------- ~:
3 |
S '
I
Stream Sources |
@ FEAST
=
pata 1 i
S 1 R P Online Feature
Kafka, Kinesis [~ |Spark transtomy Store Server
AAAAAA —r A .
Airflow SOArK’| materialize
—
,,,,,, 2 Offline
Feast SDK
Spark Store
Batch Sources A
]
Raw | | 4 3
Data

Transformed
data

Snowflake, BigQuery,
Redshift, Synapse, S3, GCS

Evaluation
+
Batch Scoring

https://docs.feast.dev/reference/alpha-aws-lambda-feature-server
https://docs.feast.dev/reference/alpha-aws-lambda-feature-server
https://docs.feast.dev/reference/feature-servers/python-feature-server

Takeaways

1. Incrementally move batch RecSys online (e.g make
fresher features). Prove business value first.

2. Managing fresh features in an online store is not trivial

E.g. low latency reads vs write throughput, batch reads,
iterating safely, bad data, cost

3. Feast abstracts complexity away, and is pluggable so

you can incrementally solve more issues

4. Consistent + performant streaming & on demand
transformations are key to online RecSys

- J
DATA+AI

SUMMIT 2022

Questions?

This talk

« https://bit.ly/feast-recsys-talk

Useful resources

« https://feast.dev/
« https://github.com/feast-dev/feast

« https://slack.feast.dev/

DATA+AI

SUMMIT 2022

.

§ Robinhood &

Porch

Engineer

fetches features

agoda

FARFETCH 2g0ca

—
= @ FEAST ,
> Build server that

Stream

Sources

Validate
Kafka, Kinesis Store Transform Serve and .
Monitor | 3 ¢
.
= ~
R i i Model
Batch Register and Discover ‘
Sources
BigQuery, Redsbhift,
83, GCS, P: t
e Szf\srggv:r:d Define features and
features transformations
Generate
training set
Data scientist
Teams running or contributing to Feast
ecton ®gojek [shopify @ IS5 OGoogecow adyen

@ SUMATRA

(— ¢

Prediction

Postmates

@0

J

https://bit.ly/feast-recsys-talk
https://feast.dev/
https://github.com/feast-dev/feast
https://slack.feast.dev/

