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The Age of 
Moneyball



The Age of Moneyball
The start of a revolution
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“If you challenge conventional 
wisdom, you will find ways to do 

things much better than they 
are currently done.”

Bill James



The Age of Moneyball
“You get on base, we win. You don't, we lose. And I hate 
losing.” - Brad Pitt/Billy Beane
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The Age of Moneyball
Data Disruption
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Billy Beane identified a market inefficiency.

The market historically priced players with high 
batting averages higher than those with high 
on-base percentages. However, on-base 
percentage has a higher correlation to total 
runs scored.

The Oakland A's used this information to 
acquire players undervalued by the market that 
could help them compete with higher payroll 
teams.

This data-driven decision disrupted the 
industry and left a legacy far beyond baseball.
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Statcast 
(R)Evolution



Statcast (R)Evolution
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Data, Data Everywhere

2001-2002: Moneyball, 
Billy Beane, Oakland A’s 
identify data-driven 
market inefficiencies.

2015: Statcast Debut.
Radar + HD Video 
measures all action on 
the field, per pitch.

2020: Statcast switches 
from TrackMan to 
Hawk-Eye as its 
technology provider.

2022: Statcast 
deployed to AAA. 
Widespread MiLB 
adoption planned. 

2006: Pitch F/X Ball 
Tracking Debut. Spin 
rates, velocity, and 
movement all tracked.

2017: Statcast switches 
from Pitch F/X to 
TrackMan as its 
technology provider.

2021: Pose Tracking and 
FieldVision debut. 
Skeleton and body 
movements tracked.



Statcast (R)Evolution
Hawk-Eye 12 Camera System
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Statcast (R)Evolution
Skeleton Pose Tracking
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Statcast (R)Evolution
FieldVision
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Statcast (R)Evolution
Seam Orientation and Observed Spin Tracking
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Statcast (R)Evolution
LIDAR Scans and Weather Tracking
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Statcast (R)Evolution
Current Technology Landscape
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Statcast (R)Evolution
Wake Forest Pitching Lab
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Big Data 
Discovery



Big Data Discovery
Siloed teams, divided data
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Baseball Analytics Departments

• Pro Scouting
• Amateur Scouting
• International Scouting
• Player Development
• Advance Game Preparation
• Player Contract Negotiations
• Internal Player Evaluation



Big Data Discovery
All departments want to consume data
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Big Data Discovery
Siloed teams, divided technology
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Disparate technologies

● On-prem Databases
● Cloud Databases
● Cloud Data warehouses
● Python
● R
● Tableau/PowerBI
● Multiple cloud providers



Big Data Discovery
Databricks Unified Analytics Platform
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Big Data Discovery
Unified Data Engineering
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How do you ingest dozens of 
disparate data sources at scale?

Before, we had different ingestion 
scripts, running on different 
on-prem and cloud based servers, 
saving to different databases.



Big Data Discovery
Unified Data Engineering
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Extract: APIs, FTPs, CSVs, other 
databases

Transform: Flatten, combine, clean

Load: Into staging Delta Lake table as 
needed, before loading into a single, 
cloud-hosted, production data 
warehouse.



Big Data Discovery
Unified Data Engineering
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By using Spark, Koalas, and the new 
integration of Koalas into PySpark, we 
can perform distributed extraction 
requests. 

We can transform millions of pitches 
with as much compute as required.

We can load at the speed of Spark.



Big Data Discovery
Unified Data Engineering and MLOps
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For the first time, since our engineering 
scripts and ML models are hosted on a 
unified analytics platform, we are also 
able to score and generate predictions as 
the data is extracted and transformed.

This allows us to communicate insights 
at a more rapid pace to our players and 
coaches to create fast decisions.



Big Data Discovery
Unified Machine Learning Development
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● DevOps is characterized by key 
principles: shared ownership, workflow 
automation, and rapid feedback.

● Automation is a core principle for 
achieving DevOps success and CI/CD 
is also a critical component.

● MLOps Involves building, deploying, 
and maintaining ML models reliably & 
continuously in an automated way.



Big Data Discovery
Unified Machine Learning Development
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Benefits of MLOps

● Models stored in the cloud, so 
everyone has access - transparency

● Easy peer and code reviews

● Models are retrained & promoted into 
production automatically

● Models are maintained & monitored

● Changes to models are tracked



Big Data Discovery
Unified Machine Learning Development
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Big Data Discovery
Unified Machine Learning Development
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Two key components: model tracking and 
model registry.

Model Tracking:

UI that logs features, parameters, models, 
and metrics for ML models.

Multiple different models can easily be 
compared and reproduced.



Big Data Discovery
Unified Machine Learning Development
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Model Registry:

A centralized, cloud storage system for 
machine learning models built in Python, R, 
and AutoML frameworks.

All previously stored versions of a model 
are saved and can be promoted to 
development, staging, and production.



Big Data Discovery
Unified Machine Learning Development
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By using MLFlow within Databricks, the Texas Rangers R&D department 
have created a centralized machine learning repository to host 
models.

Centralizing our models across teams helped us identify duplicated 
models as well as provide a constant source of truth. One model for 
pitch evaluation, strike probability, or hit effectiveness could be used by 
everyone, across player development, advance reporting, and amateur.

These models can be integrated into our unified data pipeline.



Big Data Discovery
Unified Streaming Platform
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Big Data Discovery
Unified Streaming Platform
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During games, bullpens, batting practice, 
and other data generating events, tracked 
pitch information can be streamed.

Think about the numbers that you hear 
during a modern broadcast. Exit velo, 
horizontal movement, sprint speed. We 
receive this information as it happens.



Big Data Discovery
Unified Streaming Platform
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“Auto Loader is an optimized cloud file source for 
Apache Spark that loads data continuously and 

efficiently from cloud storage as new data arrives”

34

Prakash Chockalingam 

Databricks Engineering Blog



Big Data Discovery
Unified Streaming Platform
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Big Data Discovery
Unified Streaming Platform
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Our live data originates from API sources 
in JSON format. Other streaming data 
comes through as CSVs.

With Autoloader, we can put together a 
script to load these files into Cloud 
Storage, where they are then scored and 
pulled automatically into our data lake.



Big Data Discovery
Unified Streaming Platform
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This streamed data can be 
predicted using models 
hosted in MLFlow.

Example:

By combining MLFlow and 
AutoLoader, we can visualize 
the current umpire’s strike 
zone using a strike probability 
model in real time.
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Case Study

The New Science 
of Hitting



Case Study
The New Science of Hitting
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In 2017, home run rates started to 
skyrocket across the league. 

Hitters were quoted as trying to optimize 
specific launch angle and exit velocity 
combinations, to achieve “barrels”.

How can we tell this story using data?



Case Study
The New Science of Hitting
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Using Spark and a python 
library called PyBaseball, we 
can bring in 1.8 million tracked 
pitches since the 2019 
season. 300,000 hits were 
recorded from this data.

We can use this data to 
predict a hit probability.



Case Study
The New Science of Hitting
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Features:

● Hit Launch Angle
● Hit Exit Speed
● Hit Spray Angle
● Infield Positioning
● Outfield Positioning
● Batter Handedness
● Pitcher Handedness



Case Study
The New Science of Hitting
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After performing one-hot 
encoding on the categorical 
variables, we split the data 
into a 75/25 train-test split.

An XGBoost Classifier was 
trained on this input data and 
registered with MLFlow.

This model now predicts hit 
probability.



Case Study
The New Science of Hitting
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Launch Angle and Exit 
Velocity are the two most 
important features.

However, our model also 
detected the significance of 
the shift, especially coupled 
with a left-handed hitter.

MLB is exploring banning the 
shift next season to increase 
the probability of a hit.



Case Study
The New Science of Hitting
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Case Study
The New Science of Hitting
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Case Study
“You get on base, we win. You don't, we lose. And I hate 
losing.” - Brad Pitt/Billy Beane
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Thank you
Alexander Booth
Senior Analyst, Texas Rangers

Ryan Stoll
Data Engineer, Texas Rangers


