

Backfill Streaming Data Pipelines in Kappa Architecture

Sundaram Ananthanarayanan

Senior Software Engineer, Netflix

Agenda

- Why backfill streaming pipelines
- Existing approaches
- Backfill in Kappa Style using Data Lake
- Event ordering challenges
- Adopting Kappa backfill

NETFLIX ORIGINAL Street-Food

95% Match 2019 TV-G 1 Volume VISION 5.1

- Watch Volume 1 Now
- Food, tradition, hopes and dreams. These aren't just street bites. They're dishes with heart, shaped by human stories.

巴 **Documentaries**

Q

ŝ

Ō

Exciting TV Shows

New Girl

Di m

ROMAN EMPIRE

THE DISAPPEARA MADELE

Q

G

曲

Ē

巴

Mc

98% Match 2017 TV-14 6 Seasons HD 5.1

Watch Season 6 Now

Is she just a dork or plain nuts? Who cares For three single guys, their new roommate i adorable AND eccentric.

Popular on Netflix

SERIE SEX EDUCATION

2020 16+ 2 temporadas VISION 5.1 99 % para ti

El sexo... ese tema constante en la cabeza de los adolescentes. Nada mejor que este niño inexperto para evacuar dudas.

Las 10 series más populares en Argentina hoy

THE END OF

NETFLIX

GUARDIANS

DATA+AI SUMMIT 2022

Event streaming at Netflix

Personalization DE built various data systems that power data analytics and ML algorithms.

Real-time Merched Impression (RMI) Flink App:

- Join Impression events with Playback events in real-time to attribute plays to impressions.
- Use Cases: Algo training, AB test analysis, etc.
- One of the largest stateful Flink apps at Netflix.

Event streaming operations

Streaming apps can fail due to various reasons:

- Source / sink failures
- Dependent service failures
- Upstream data changes

After failures, we need to backfill to mitigate downstream impact.

Event streaming operations

Possible types of backfilling needs:

- Correcting wrong data
- Backfilling missing data
- Bootstrapping state

How should we backfill?

Option #1: Replaying source events

The easiest way to backfill is by re-running the streaming job to reprocess source events from the problematic period.

Challenges

- Troubleshooting can take hours or days and source data can expire.
 - Increasing message queue retention is very expensive.
 - Row-based formats (e.g. Avro) have lower compression rate (v.s. Parquet/ORC).
 - Low-latency storage solutions (e.g. EBS gp2) are more costly (v.s. S3).
 - It would cost Netflix \$93M/year to retain 30 days of data generated by all apps.

Netflix's Keystone¹ platform provides a routing service that makes Kafka events available in other storage systems, e.g. a **data lake** for batch processing.

Why Data Lake?

A data lake¹ is a central location that stores a large amount of data in its native raw format, using a flat architecture and object storage.

• Frameworks: Delta Lake, Apache Iceberg (Netflix's choice)

Why data lake?

Cost effective: data are stored in compressed formats e.g. Parquet.
 Other features: file pruning, schema evolution, engine-agnostic, etc.

Kafka events stored in an Iceberg table

	Playback Kafka Events
{	"account_id":98524989, "show_id":4236781, "view_duration_sec": 123,
}, {	
	"account_id":87934298, "show_title_id":8754782, "view_duration_sec": 45,
}, {	
	"account_id":79403754, "show_id":3648295, "view_duration_sec": 81,
}, 	

	Playback Iceberg Table						
>	account_id	show_id	view_duration	metadata			
	98524989	4236781	123	{kafka_ingestion_ts:}			
	87934298	8754782	45	{kafka_ingestion_ts:}			
	79403754	3648295	81	{kafka_ingestion_ts:}			

Can we backfill from the data lake?

Option #2: Lambda Architecture

Build and maintain a batch-based application (e.g. Spark job) that is equivalent to the streaming application but reads from Iceberg tables.

Option #2: Lambda Architecture

Build and maintain a batch-based application (e.g. Spark job) that is equivalent to the streaming application but reads from Iceberg tables.

Challenges

- Initial development of such batch job can take days or weeks, incl. data validation between two different applications.
- Continuous engineering efforts to keep the batch app up to date.

Option #3: Unified batch and streaming

Taking two birds with one stone?

Frameworks

- Apache Flink: offers both batch and streaming modes.
- Apache Beam¹: a unified programming model for batch and streaming data processing pipelines.

Limitations

- Flink requires significant code changes to run batch mode.
- Beam only has partial support on state, timers, and watermark².

Backfill Option Comparison

Pros & cons in summary

Rerunning Streaming Job

- Method: Rerun the streaming app before source data expire.
- Pros: Backfill using the same app.
- Cons: Increasing message queue retention is expensive. ***

Separate Batch Job

- Methodology: Maintain an equivalent batch app reading from a data lake.
- Pros: Low data retention cost in data lake.
- Cons: Engineers have to maintain two applications in parallel. 2 2 2

Unified Batch & Streaming

- Prerequisite: Use a framework with both batch & streaming modes.
- Pros: Backfill using the batch mode.

Can we combine the best things from all three worlds?

Backfilling In Kappa Architecture (feat. Data Lake)

Backfilling using Data Lake: Goals

• Provide a generic solution that works for all classes of applications

• Minimal code changes to add support

• <u>Scales</u> horizontally to backfill quickly

Backfilling using Data Lake: Overview

Backfilling using Data Lake: Overview

Backfilling using Data Lake: Overview

Ingesting streaming data into data lake

Batching events results in good compression ratios.

How to backfill?

• Strawman 1: Read events from files filtered by backfill dates

datastream

30

datastream

How to backfill?

- Strawman 1: Read events from files filtered by backfill dates
 - Scales horizontally to backfill quickly
 - ***** Does not work for all types of applications

Challenge #1: Applications assume ordering

Challenge #1: Applications assume ordering

Challenge #1: Applications assume ordering

Strawman 2: Order all files and read in order

Strawman 2: Order all files and read in order

Strawman 2: Order all files and read in order

Strawman 2: Order all files and read in order

How to backfill?

- Strawman 1: Read events from files filtered by backfill dates
 - Scales horizontally to backfill quickly
 - ***** Does not work for all types of applications
- Strawman 2: Order all files and read them in order
 - ✓ Guarantees similar ordering semantics as the live traffic
 - **×** Does not scale horizontally

But, not all streaming apps rely on strong ordering guarantees.

Event-Time Semantics

Event-Time Semantics

Idea: Use lateness tolerated by app

Т	r=05	T=05	T=510	T=510	T=1015
L					

Assuming lateness of "10" minutes is okay.

Т=0)5	T=05		T=510		T=510	T=1015	IW=0 watermark
-----	----	------	--	-------	--	-------	--------	-------------------

How to backfill?

- Strawman 1: Read events from files filtered by backfill dates
 - Scales horizontally to backfill quickly
 - ***** Does not work for all types of applications
- Strawman 2: Order all files and read them in order
 - ✓ Guarantees similar ordering semantics as the live traffic
 - Does not scale horizontally
- Our Solution: Read files while maintaining lateness constraints
 - Guarantees ordering that work for the application
 - Scales horizontally to finish backfill quickly

Messaging System's Ordering Guarantees

• Kafka provides strict ordering of events within a partition.

 Most analytical use-cases (streaming-joins, sessionization) use event-time semantics and do not require such stronger guarantees.

Challenge 2: Reading Multiple Sources

- One source can have significantly way more data than the other.
- During backfill, this could lead to a watermark skew resulting in state size explosion.
- This can eventually lead to slow checkpoints or checkpoint timeouts.

Communicate watermark updates to the global tracker.

Global watermark should reflect the slowest source.

Use the *global watermark* to find if files can be dispatched without violating the **'lateness'** constraint.

How to backfill?

- Strawman 1: Read events from files filtered by backfill dates
 - Scales horizontally to backfill quickly
 - ***** Does not work for all types of applications
- Strawman 2: Order all files and read them in order
 - ✓ Guarantees similar ordering semantics as the live traffic
 - Does not scale horizontally
- Our Solution: Read files while maintaining lateness constraints
 - Guarantees ordering that work for the application
 - Scales horizontally to finish backfill quickly
 - Alignment across sources to avoid state size explosion

Agenda

- Why backfill streaming pipelines
- Existing approaches
- Backfill in Kappa Style using Data Lake
- Event ordering challenges
- Adopting Kappa backfill

Minimal code changes

```
@SpringBootApplication
class PersonlizationsStreamingApp {
    @Bean
    def flinkJob(
        @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],
        @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],
        @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}
```

@Bean

```
def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =
    new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])
```

}

Minimal code changes

```
@SpringBootApplication
class PersonlizationsStreamingApp {
    @Bean
    def flinkJob(
        @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],
        @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],
        @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}

@Bean
```

```
def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =
    new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer[ImpressionEvent])
```

@Bean

```
def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =
    new IcebergSourceConfigurer(
        "backfill-impression-source",
        Avro.deserializerFactory[ImpressionEvent])
```


}

Minimal code changes

```
@SpringBootApplication
class PersonlizationsStreamingApp {
 @Bean
 def flinkJob(
     @Source("impression-source") impressionSource: SourceBuilder[Record[ImpressionEvent]],
      @Source("playback-source") playbackSource: SourceBuilder[Record[PlaybackEvent]],
      @Sink("summary-sink") summarySink: SinkBuilder[ImpressionPlaySummary]) {...}
  @Bean
  def liveImpressionSourceConfigurer(): KafkaSourceConfigurer[Record[ImpressionEvent]] =
    new KafkaSourceConfigurer("live-impression-source", KafkaCirceDeserializer ImpressionEvent
 @Bean
 def backfillImpressionSourceConfigurer(): IcebergSourceConfigurer[Record[ImpressionEvent]] =
   new IcebergSourceConfigurer(
       "backfill-impression-source".
        Avro.deserializerFactory ImpressionEvent
}
                  Note: In-memory representation of the Iceberg source is consistent with the Kafka Source.
```


Minimal code changes

<pre>nfflink: job.name: rmi-app connectors: sources: impression-source: type: dynamic selected: live-impression-source candidates: - live-impression-source</pre>	
<pre>- backfill-impression-source live-impression-source: type: kafka topics: impressions</pre>	App config changes to support backfilling
<pre>cluster: impressions_cluster backfill-impression-source: type: iceberg</pre>	
<pre>database: default table: impression_table_name max_misalignment_threshold: 15min</pre>	

What we learned from backfilling in prod

Results

- High throughput: processing 24 hours of data takes ~ 5 hours.
- Consistent data quality: backfill output matches 99.9% with prod.

Lessons Learned

- Backfilling window and configs depend on application logic.
- Backfilling job needs tuning (separately from prod job).

Kappa Backfill benefits

Use the same streaming application for production and backfilling

Easy to set up

Backfill large historical data quickly

Cost Efficient (\$2M/year in Iceberg v.s \$93M/year in Kafka)

DATA+AI SUMMIT 2022

Thank you

Sundaram Ananthanarayanan Senior Software Engineer, Netflix

Xinran Waibel Senior Data Engineer, Netflix

SUMMIT 2022