
Apple logo is a trademark of Apple Inc.

Lessons Learnt from Launching
Millions of Spark Executors

Zhou Jiang, Aaruna Godthi

THIS IS NOT A CONTRIBUTION

About Us

Aaruna Godthi leads the team that
provides an on-demand, secure, fully
managed and elastic Apache Spark
service to various teams at Apple.

Zhou Jiang is a software engineer
building a high performance data

analytics platform for software engineers
and data scientists at Apple.

Data Platform
Securely accelerate the creation of immersive data experiences

Compute & Storage

Data Engineers Data Scientists ML Engineers Business Analysts

Data Governance & Metadata Layer

High performance Data Lake
All your data, in one place ready to feed insights and analytics

Data Processing & Analytics Engines
Large scale data processing and job management

Data Science Environment
High quality insights and modeling

BI Tools
High quality insights

Managed Spark at Apple

What & Why ?

Elastic Self Service Spark

CPU

CPU

CPU

CPU

CPU

CPU

RAM

Disk

Job Job Job Job

CPU

CPU

CPU

CPU

CPU

CPU

Disk

Job Job Job Job

Job Job Job Job

Why?

RAM

Elastic Self Service Spark

Disk
 Disk

Disk
 Disk

Storage

CPU

CPU

CPU

CPU

CPU

CPU

Job Job Job Job

Job Job Job Job

Analytics Node

RAM

Code to Deployment
Develop, Build, Deploy, Run

Spark Application

Source Control
 Build and Test
 Deployment

Security
 Boost Runtime

Source Code CI/CD Data Platform
Identity,

Network,

Secrets

Telemetry

Logging

Spark UI

History Server

Compute Infrastructure

Security

• Application certificates

• Network ACLs

• Encryption

• Secrets management

Monitoring

• Logging Integration

• Telemetry System Integration

• User Defined Metrics

• Alert on Key Metrics

How

Orchestration Architecture

Scheduler

Mesos-based Cluster

Spark
Orchestrator

APIs

Dashboard

Workflow
Engines

Driver

Executor

Executor

Orchestration Architecture

K8s API Server

Manage

Status

Events

K8s Cluster

k8sAPIs
Scheduler

Spark Operator

Spark UI (Live/
History)

User namespace

Spark
Orchestrator

APIs

Dashboard

Workflow
Engines

D E

Spark Applications

Spark system namespace

Our Scale

2020 2021 2022

20K+ Jobs

 275K+ Executors

180K+ Jobs

 2M+ Executors

380K+ Jobs

 5M+ Executors

Scale up Spark On Kubernetes

Challenges

Varying Workload Pattern

• "Wide" - simultaneously schedule 5k -10k Spark applications with small number of executors

• "Deep" - schedule a few jobs with 1k - 8k executors with heavy I/O on external FileSystem

• "Wide and Deep”- continuously schedule around 2k applications per minute, each app requests hundreds

executors.

• Fluctuating batches applications / scheduled daily or weekly jobs

• Requirements for gang / batch scheduling

Stress on Kubernetes

• Expect massive Spark Applications created simultaneously at peak time

• Each UPDATE of Spark Application CRD results in a new version

• Pod churn

Fills 8GB ETCD in 10 mintes

One Interface over Multi-Cloud

• Requirements for bring-you-own-cloud

• Leverage additional compute resources

• Feature Parity with On-prem

• Fast & Easy cluster onboarding

• Access control

Data Platform Control Plane

On Prem
Infrastructure Cloud Infrastructure

Data Engineers Data Scientists

Strategies

Optimize Kubernetes for Spark Workload

• Kubernetes optimization for write throughput

• Increase ETCD size to beyond 8GB

• Compaction tuning on ETCD

• Separate storage for resources and events

• Working with cluster auto-scaler

• Priority class and preemption

• IPv4 exhaustion

• Use cluster-routable IPs whenever possible

• IPv6 upgrade for all services

Spark Orchestration at Scale
Concurrency Check

 spec:

 schedule: "@every 5m"

 concurrencyPolicy: Allow

• Typical concurrency policies (available in
oss operator)

• e.g. Allow / Forbid / Replace

• Possibility to flood cluster for batch

job ('wide' case)

• Advanced concurrency control

• Limit the max number of concurrent
runs globally

• Scheduled / ad-hoc runs

Granular Concurrency Check at Orchestration

 properties:

 spark.executor.instances: 4

 spark.apple.job.max.concurrent.runs: 100 // global max concurrent runs

 spark.apple.manualRun.max.concurrent.runs: 10 // max concurrent ad-hoc run

 spark.apple.triggers.hourlyJob.maxConcurrentRuns: 5 // max concurrent scheduled run from trigger

Add to Active Run
Index

Exceed
Max Allowed

Run ?

New Run
triggered

Terminated

Schedule & Run All Tasks complete,
Resource released

Remove from Active
Index

Avoid Partially Running Applications

• Gang-scheduling solutions

• Batch integration for operator

• Driver / executor pod group support

• Apple collaboration in the community

• Operator-side timeouts helps in

• Proactively terminates when not enough

executors registered after given threshold

• Restart policy for infrastructure reasons

Scheduler

Spark App A Spark App B

Neither can proceed at partial capacity,

waiting for more resources,

causing deadlock

Avoid Partially Running Applications

• Gang-scheduling solutions

• Batch integration for operator

• Driver / executor pod group support

• Apple collaboration in the community

• Operator-side timeouts helps in

• Proactively terminates when not enough

executors registered after given threshold

• Restart policy for infrastructure reasons

Operator

Spark App A Spark App B

Terminates partially running applications if needed

Timeout Partially Running Applications

 properties:

 spark.executor.instances: 400

 spark.apple.executors.min.threshold.ratio: 0.8 // requires at least 80% of total executors

 spark.apple.executors.startup.timeout: 60000 // terminate if cannot get enough executors after 10 min

 spark.apple.backoff.duration.on.failure.ms: 30000 // backoff 5 min before attempting restart

Submitted Running with Partial
Capacity Running HealthyRunning with under

Threshold Executors Succeeded

Executor Launch
Timedout

Mitigate Cluster Storage Stress

Submitted Running with Partial
Capacity Running HealthyRunning with under

Threshold Executors

Succeeded

Running with Partial
Capacity

Running HealthyRunning with Partial
CapacityRunning HealthyRunning with Partial

Capacity

• Detailed running state may results in large state transition history

• Executor lost / evicted / preempted, job may swing between states

• History pruning within same attempt

• Orchestrator acknowledgement-based state history pruning

State transition history prune

Keeping most recent states

Keeping start-up states

Utilization-based Allocation Recommendation

• Setting resource requests and limits

• Low allocation leads eviction

• Over allocation means resource waste

• Use Spark metrics from previous runs

• Add listener for metrics collection

• Aggregate historical run data over Spark

• Provide recommendations for future run

Dynamic Allocation

• Dynamic Allocation is enabled for Spark 2.4 and above

• Batching pod requests

• Shuffle tracking and graceful decommission [SPARK-20624]

• External shuffle storage based on PVC

 // enable dynamic allocation

 spark.dynamicAllocation.enabled

 spark.dynamicAllocation.minExecutors

 spark.dynamicAllocation.maxExecutors

 spark.dynamicAllocation.executorIdleTimeout

 spark.kubernetes.allocation.batch.size

// or do dynamic allocation with migration

spark.decommission.enabled

spark.executor.decommission.killInterval

spark.storage.decommission.enabled

spark.storage.decommission.rddBlocks.enabled

 // enable state tracking

 spark.dynamicAllocation.shuffleTracking.enabled

 spark.dynamicAllocation.shuffleTracking.timeout

 spark.dynamicAllocation.cachedExecutorIdleTimeout

// and external shuffle storage

spark.shuffle.externalStorage.enabled

spark.shuffle.externalStorage.backend

spark.shuffle.externalStorage.bucket

Scale up Spark on Kubernetes

• Multi-tenant history server per cluster

• History server based off version 2.4, serving all versions

• Stores aggregated view of most recent jobs

History Server

Job Timeline

Events

Push-button Cloud Management
• Automated cluster installation

• Cloud provider setup (resource acquisition, IAM .etc)

• Kubernetes cluster provisioning

• In-kubernetes components installation

• Infrastructure as Code (IaC)

• Feature parity

• CI / CD for control plane update

• Logging & telemetry integration

• Security

• Team-based cluster access

• Access control for Spark UI

Resource acquisition and

Kubernetes provisioning

Setup authentication

Control Plane Installation

Add new cluster to inventory

Lessons

Scale up Spark on Kubernetes

• Configure k8s etcd storage size and compaction for write throughput

• Batch scheduling and infrastructure timeouts

• Design concurrency policy for 'wide' use cases

• Avoid over-allocation by analyzing historical runs

• Cluster-level auto-scaler and app-level dynamic allocation for cost

efficiency

• History-server scaling up

• Portable, provider-agnostic in-cluster controlplane components

We are hiring!

TM and © 2022 Apple Inc. All rights reserved.

