DATA+AI

SUMMIT 2022

Spark SQL Aggregate
Improvements at
Meta

Shipra Agrawal
OOOOOOOOOOO & databricks Che ng Su

About Us

 Shipra Agrawal
 Software Engineer at Meta (Data Platform Team)
* Worked on Spark Core & SQL

 Cheng Su

« Software Engineer at Anyscale (Ray Data Team)
« Apache Spark contributor (Spark SQL)

* Previously worked on Spark, Hive & Hadoop at Meta

DATA+AI

SUMMIT 2022

Agenda

« Hash aggregate
« adaptive bypass of partial aggregate
* Object hash aggregate
« adaptive sort-based fallback based on JVM metrics
- Sort aggregate
* prefer sort aggregate when data is already sorted
« code generation
- Data source aggregate

« aggregate push down for ORC data source
* efficient statistics collection via file footer

DATA+AI

SUMMIT 2022

Agenda

- Hash aggregate
« adaptive bypass of partial aggregate
* Object hash aggregate
« adaptive sort-based fallback based on JVM metrics
- Sort aggregate
* prefer sort aggregate when data is already sorted
« code generation
- Data source aggregate

« aggregate push down for ORC data source
* efficient statistics collection via file footer

DATA+AI

SUMMIT 2022

Hash Aggregation (Partial
Aggregation - Mapper Side)

select avg(score) from student_record group by student;

Partition 1

student_record
student score Key Buffer
A 70 Sum Count
85
75

Grouping Aggregation
Key Buffer

Sum Count

255
160
150

90
80
95
70

DATA+AI

SUMMIT 2022

Hash Aggregation (Partial
Aggregation - Mapper Side)

Grouping Aggregation

Partition 2 Key Buf fer [
i |
Sum Count EERLEESSRY
tudent external |
studen score A 70 1 nrrer(2) . : .
A 70 80 1 Grouping Aggregation
Key Buffer
&l C 60 1
60 Sum Count
90 Grouping Aggregation g§;§?4) i;f 3
80
Key Buffer >

80 60

75 Sum Count

90 1
80 1

90
80

2 I

DATA+AI

SUMMIT 2022

Shuffle (After Partial Aggregation)

Partition 1

Grouping Aggregation
Key Buffer

Sum Count
255
160
150

Partition 2
Grouping Aggregation
Key Buffer
Sum Count
225 3

80
60
90
80

DATA+AI

SUMMIT 2022

Shuffle

Partition 3
Grouping Aggregation
Key Buffer
Sum Count
255 3

160

150

225
80
60
90
80

A
B
C
A
B
C
D
E

Hash Aggregation (Final
Aggregation - Reducer Side)

_) Grouping Aggregation
Partition 3 Grouping Aggregation [EIESSNR{INPEL 4 EDE Key Buffer

Grouping Aggregation Buffer sorter(2)

Key Buffer Sum Count
Sum Count 480 6

240
255 3 240 3 210
160 3 Merge =
150 Sort(4)

Grouping Aggregation 80
225 Ke Buffer
80 4
60 Sum Count
920 1
80 1

Sum Count
480 6

Grouping Avg
Key
A 80

A
B
C
A
B
C
D
E

80
70

90
DATA+AI 80

SUMMIT 2022

The Problem

Grouping Aggregation
Key Buffer

Sum Count
score A 70 1
A 70 80 1

80 C 60 1
60

90 Grouping Aggregation
80 Key Buffer

Partition 2

student_record
student

80
75

Sum Count
90 1
80 1

2
DATA+AI

SUMMIT 2022

Aggregate reduction ratio =
(Input row count - Output row
count) / Input row count

2 /7 =

0.29

Iexternal

SOIter(2) Grouping Aggregation
Key Buffer
Sum Count
Merge 225 3
Sort(4) 80
|

60

90
80

Potential Solutions to Skip
Partial Aggregation

X Decide based on metrics from historical runs.

v/ Decide at runtime based on metrics of current job.

DATA+AI
SUMMIT 2022

History-Based Tuning at Meta

Query Plan

Template

DATA+AI

SUMMIT 2022

Apply
- Conservative
Defaults

\ .K\\\
\ \
: . '

No Regressions/Failures
since past N days

® ®

Solution 1: History Based Tuning

 Use hash aggregation reduction ratio of historical

runs.

« Several issues with this approach:

* Historical statistics might be not available.

* Using final aggregation ratio may be an overestimate.

* This has to be done for all tasks in a stage.

« Input data characteristics across runs, for eg. in case of

skew. Historical metrics won’t help here.

DATA+AI

SUMMIT 2022

Solution 2: Runtime Decision

* Goal is to minimize both false positives and false
negatives.

- Partial aggregation is skipped if reduction observed is
less than 50% after processing 100,000 rows and it's
incurring spill.

 Gives ability to have partial aggregation for some, but not

necessarily all tasks in a stage.

« On average, a stage skipping partial aggregation skipped it for ~

75% of the tasks.

DATA+AI

SUMMIT 2022

Solution 2: Runtime Decision

* Results:

* Affected jobs contribute around 35% by CPU, 5% by count.
* Reduction in Spill: 34%, CPU time: 9%, Reserved memory time:

12%

DATA+AI

SUMMIT 2022

'———————————————————
-—

—

-

Filter

stage id: 0

number of output rows: 8,368,374,111

Final

Aggregation

Project

HashAggregate
stage id: O

spill size total (min, med, max):
182.7 GB (128.0 MB, 128.0 MB, 128.0 MB)
aggregate time total (min, med, max):
5.083h (6.3s,11.9s,38.35s)
peak memory total (min, med, max):
731.9 GB (448.0 MB, 512.0 MB, 512.0 MB
| number of skipped records for partial aggregates 4,075,407,384
number of output rows: 8,320,166,403
avg hash probe (min, med, max):
(1.6, 1.6, 1.6)

f‘

DATA+AI

SUMMIT 2022

Future Work

« Handle skew by evaluating reduction ratio for each
grouping key.

* Add improvement to object hash aggregation.

« Contribute back to Apache Spark.

DATA+AI

SUMMIT 2022

Agenda

« Hash aggregate
« adaptive bypass of partial aggregate
* Object hash aggregate
« adaptive sort-based fallback based on JVM metrics
- Sort aggregate
* prefer sort aggregate when data is already sorted
« code generation
- Data source aggregate

« aggregate push down for ORC data source
* efficient statistics collection via file footer

DATA+AI

SUMMIT 2022

Object Hash Aggregate

* Used in aggregate functions like collect_list, percentile etc.
where each aggregation buffer can have a different size.

* Supports arbitrary-sized JVM objects as aggregation states.

« Differences from Hash aggregate:

* Uses safe rows as aggregation buffers in an ObjectAggregationMap.

« Spills the map after it reaches a certain entry count. (set to a very small
value).

+ Sorts all the remaining input rows, while hash aggregation does this for a
reduced number of rows.

* Observation: JVM heap memory underutilized at only around 20%.

* Problem: premature spilling and extra processing cost for the
remaining rows.

DATA+AI

SUMMIT 2022

Solution: Track Heap Memory Usage

 Solution: use JVM heap memory usage along with map entry

count to decide when to spill.
* Ensure both performance and reliability.

« Configs for memory usage threshold and row count interval.

* By fixing memory usage threshold at 70% and row count interval at 100,

we limit OOMs to 5-6 jobs.

Limitation: some JVM OOMs inevitable in cases of skew.

DATA+AI

SUMMIT 2022

Improvements

Almost always deferred spill. Spilled bytes reduced by >10%.

* Prevented spilling entirely for almost half of all Spark

tasks.

* On-heap memory utilization improved from 20% to 80%.

Reserved memory time reduced by >30%.
* Reduced pressure on off-heap memory reduced pre-existing

off-heap OOMs.

DATA+AI

SUMMIT 2022

Future Work

Change to ‘push notification’ model for detecting memory usage

threshold crossing.

Explore replicating hash aggregate fallback mechanism to reduce

number of rows being sorted.

« Contribute back to Apache Spark.

DATA+AI

SUMMIT 2022

Agenda

« Hash aggregate
« adaptive bypass of partial aggregate
* Object hash aggregate
« adaptive sort-based fallback based on JVM metrics
e Sort aggregate
« prefer sort aggregate when data is already sorted
« code generation
- Data source aggregate

« aggregate push down for ORC data source
* efficient statistics collection via file footer

DATA+AI

SUMMIT 2022

Sort Aggregate

* Local sort is needed on aggregate keys before sort aggregate.
* Process sorted data and aggregate rows with same keys.

« Differences from hash aggregate:

* No need to maintain hash table, and so no memory spill or fallback.
« Optimizer prefers to use hash aggregate over sort aggregate

* No implementation for code generation

DATA+AI

SUMMIT 2022

Prefer Sort Aggregate if Data Is
Sorted

 Add physical plan rule (ReplaceHashWithSortAgg) to check if
child of aggregate is sorted on aggregate keys. If yes, then use
sort aggregate, instead of hash and object hash aggregate.

* Improve performance of aggregate when data is already sorted on
keys.

Eliminate the cost of constructing and looking up hash table.

« The feature is merged in Spark 3.3.

« Enable this feature by setting configuration
spark.sql.execution.replaceHashWithSortAgg=true.

DATA+AI

SUMMIT 2022

Code Generation for Sort Aggregate

« Spark has whole stage code generation for many operators (filter,

project, hash aggregate, etc), but not for sort aggregate.

* Add code generation for sort aggregate to improve performance of

job.

* Code is merged in Spark 3.3 to support sort aggregate without

keys.
* Future release will support sort aggregate with keys.
* The feature is enabled by default.

DATA+AI

SUMMIT 2022

Agenda

« Hash aggregate
« adaptive bypass of partial aggregate
* Object hash aggregate
« adaptive sort-based fallback based on JVM metrics
« Sort aggregate
* prefer sort aggregate when data is already sorted
« code generation
- Data source aggregate

« aggregate push down for ORC data source
* efficient statistics collection via file footer

DATA+AI

SUMMIT 2022

Background: Apache ORC

Rows are divided into multiple

groups.

* Columns are stored separately.

250 MB Stripe

* File footer stores columns
statistics

* Rows count
* Non-null values count

 Min, max value

@

g
73
o
Q
rel
~

DATA+AI

SUMMIT 2022

Aggregate Push Down for ORC Data
Source

* Use file footer column statistics to short-cut aggregate
processing.

« Example query: SELECT MIN(id) FROM users
* Get min statistics for column “id” in each file footer.
« Aggregate min statistics together.

* No need to process actual rows in files.

* The feature is merged in Spark 3.3. Only work for Data source v2.

* Enable this feature by setting configuration
spark.sql.orc.aggregatePushdown=true.

DATA+AI

SUMMIT 2022

Efficient Statistics Collection
via File Footer

 Partition/table statistics = Collection(files statistics for the
partition/table)

« Example of partition/table statistics:
Rows count
Total files size

Min, max values of each column

* Accurate up-to-date partition/table statistics is useful for
query optimizer to generate better query plan.

« Traditional statistics collection is a separate job to
reprocess ALL rows from each file. Inefficient and hard to
manage.

DATA+AI

SUMMIT 2022

Efficient Statistics Collection
via File Footer

* Our solution: statistics collection by only opening files footer

(that’'s enough for ORC and Parquet!).
* Eliminate cost of reprocess actual rows in each file.

* Enforce statistics collection automatically right after inserting

to table. Make sure statistics of partition/table is always

accurate and up-to-date.

DATA+AI

SUMMIT 2022

DATA+AI

SUMMIT 2022 v

"Thank You

