
Spark SQL Aggregate
Improvements at
Meta

Shipra Agrawal

Cheng Su

About Us

• Shipra Agrawal

• Software Engineer at Meta (Data Platform Team)

• Worked on Spark Core & SQL

• Cheng Su

• Software Engineer at Anyscale (Ray Data Team)

• Apache Spark contributor (Spark SQL)

• Previously worked on Spark, Hive & Hadoop at Meta

Agenda

• Hash aggregate
• adaptive bypass of partial aggregate

• Object hash aggregate
• adaptive sort-based fallback based on JVM metrics

• Sort aggregate
• prefer sort aggregate when data is already sorted
• code generation

• Data source aggregate
• aggregate push down for ORC data source
• efficient statistics collection via file footer

Agenda

• Hash aggregate
• adaptive bypass of partial aggregate

• Object hash aggregate
• adaptive sort-based fallback based on JVM metrics

• Sort aggregate
• prefer sort aggregate when data is already sorted
• code generation

• Data source aggregate
• aggregate push down for ORC data source
• efficient statistics collection via file footer

Hash Aggregation (Partial
Aggregation - Mapper Side)

Partition 1

 student_record
student score

A 70
B 85
B 75
A 90
C 80
A 95
C 70

Grouping
Key

Aggregation
Buffer

Sum Count
A 70 1
B 85 1
....

Grouping
Key

Aggregation
Buffer

Sum Count
A 255 3
B 160 2
C 150 2

Hash Aggregation (Partial
Aggregation - Mapper Side)

Partition 2

student_record
student score

A 70
B 80
C 60
D 90
E 80
A 80
A 75

Grouping
Key

Aggregation
Buffer

Sum Count
A 70 1

B 80 1

C 60 1

Grouping
Key

Aggregation
Buffer

Sum Count
D 90 1
E 80 1
A 155 2

Spill to
external
sorter(2)

Merge
Sort(4)

Grouping
Key

Aggregation
Buffer

Sum Count

A 225 3
B 80 1
C 60 1
D 90 1
E 80 1

(1)

(3)

Shuffle (After Partial Aggregation)

Partition 2

Grouping
Key

Aggregation
Buffer

Sum Count
A 225 3
B 80 1
C 60 1
D 90 1
E 80 1

Grouping
Key

Aggregation
Buffer

Sum Count

A 255 3
B 160 2
C 150 2

Partition 1

Grouping
Key

Aggregation
Buffer

Sum Count
A 255 3
B 160 2
C 150 2
A 225 3
B 80 1
C 60 1
D 90 1
E 80 1

Shuffle

Partition 3

Partition 2

Hash Aggregation (Final
Aggregation - Reducer Side)
Partition 3

Grouping
Key

Aggregation
Buffer

Sum Count
A 255 3
B 160 2
C 150 2
A 225 3
B 80 1
C 60 1
D 90 1
E 80 1

Grouping
Key

Aggregation
Buffer

Sum Count

A 480 6
B 240 3
C 210 3

Grouping
Key

Aggregation
Buffer

Sum Count

D 90 1
E 80 1

Grouping
Key

Aggregation
Buffer

Sum Count
A 480 6
B 240 3
C 210 3
D 90 1
E 80 1

Grouping
Key

Avg

A 80
B 80
C 70
D 90
E 80

(1)

(3)

Spill to external
sorter(2)

Merge
Sort(4)

The Problem
Aggregate reduction ratio =
(Input row count - Output row
count) / Input row count
2 / 7 = 0.29

Partition 2

student_record
student score

A 70
B 80
C 60
D 90
E 80
A 80
A 75

Grouping
Key

Aggregation
Buffer

Sum Count
A 70 1

B 80 1

C 60 1

Grouping
Key

Aggregation
Buffer

Sum Count
D 90 1
E 80 1
A 155 2

Spill to
external
sorter(2)

Merge
Sort(4)

Grouping
Key

Aggregation
Buffer

Sum Count

A 225 3
B 80 1
C 60 1
D 90 1
E 80 1

(1)

(3)

Potential Solutions to Skip
Partial Aggregation

Decide based on metrics from historical runs.

Decide at runtime based on metrics of current job.✓
✗

History-Based Tuning at Meta

Solution 1: History Based Tuning

• Use hash aggregation reduction ratio of historical

runs.

• Several issues with this approach:

• Historical statistics might be not available.

• Using final aggregation ratio may be an overestimate.

• This has to be done for all tasks in a stage.

• Input data characteristics across runs, for eg. in case of

skew. Historical metrics won’t help here.

Solution 2: Runtime Decision

• Goal is to minimize both false positives and false

negatives.

• Partial aggregation is skipped if reduction observed is

less than 50% after processing 100,000 rows and it’s

incurring spill.

• Gives ability to have partial aggregation for some, but not

necessarily all tasks in a stage.

• On average, a stage skipping partial aggregation skipped it for ~

75% of the tasks.

Solution 2: Runtime Decision

• Results:

• Affected jobs contribute around 35% by CPU, 5% by count.

• Reduction in Spill: 34%, CPU time: 9%, Reserved memory time:

12%

Example

P Partial
Aggregation

F Final
Aggregation

Future Work

• Handle skew by evaluating reduction ratio for each
grouping key.

• Add improvement to object hash aggregation.

• Contribute back to Apache Spark.

Agenda

• Hash aggregate
• adaptive bypass of partial aggregate

• Object hash aggregate
• adaptive sort-based fallback based on JVM metrics

• Sort aggregate
• prefer sort aggregate when data is already sorted
• code generation

• Data source aggregate
• aggregate push down for ORC data source
• efficient statistics collection via file footer

• Used in aggregate functions like collect_list, percentile etc.
where each aggregation buffer can have a different size.

• Supports arbitrary-sized JVM objects as aggregation states.

• Differences from Hash aggregate:
• Uses safe rows as aggregation buffers in an ObjectAggregationMap.

• Spills the map after it reaches a certain entry count. (set to a very small
value).

• Sorts all the remaining input rows, while hash aggregation does this for a
reduced number of rows.

• Observation: JVM heap memory underutilized at only around 20%.

• Problem: premature spilling and extra processing cost for the
remaining rows.

Object Hash Aggregate

Solution: Track Heap Memory Usage

• Solution: use JVM heap memory usage along with map entry

count to decide when to spill.

• Ensure both performance and reliability.

• Configs for memory usage threshold and row count interval.

• By fixing memory usage threshold at 70% and row count interval at 100,

we limit OOMs to 5-6 jobs.

• Limitation: some JVM OOMs inevitable in cases of skew.

Improvements

• Almost always deferred spill. Spilled bytes reduced by >10%.

• Prevented spilling entirely for almost half of all Spark

tasks.

• On-heap memory utilization improved from 20% to 80%.

Reserved memory time reduced by >30%.

• Reduced pressure on off-heap memory reduced pre-existing

off-heap OOMs.

Future Work

• Change to ‘push notification’ model for detecting memory usage

threshold crossing.

• Explore replicating hash aggregate fallback mechanism to reduce

number of rows being sorted.

• Contribute back to Apache Spark.

Agenda

• Hash aggregate
• adaptive bypass of partial aggregate

• Object hash aggregate
• adaptive sort-based fallback based on JVM metrics

• Sort aggregate
• prefer sort aggregate when data is already sorted
• code generation

• Data source aggregate
• aggregate push down for ORC data source
• efficient statistics collection via file footer

• Local sort is needed on aggregate keys before sort aggregate.

• Process sorted data and aggregate rows with same keys.

• Differences from hash aggregate:

• No need to maintain hash table, and so no memory spill or fallback.

• Optimizer prefers to use hash aggregate over sort aggregate

• No implementation for code generation

Sort Aggregate

• Add physical plan rule (ReplaceHashWithSortAgg) to check if
child of aggregate is sorted on aggregate keys. If yes, then use
sort aggregate, instead of hash and object hash aggregate.

• Improve performance of aggregate when data is already sorted on
keys.
• Eliminate the cost of constructing and looking up hash table.

• The feature is merged in Spark 3.3.

• Enable this feature by setting configuration
spark.sql.execution.replaceHashWithSortAgg=true.

Prefer Sort Aggregate if Data Is
Sorted

• Spark has whole stage code generation for many operators (filter,

project, hash aggregate, etc), but not for sort aggregate.

• Add code generation for sort aggregate to improve performance of

job.

• Code is merged in Spark 3.3 to support sort aggregate without

keys.

• Future release will support sort aggregate with keys.

• The feature is enabled by default.

Code Generation for Sort Aggregate

Agenda

• Hash aggregate
• adaptive bypass of partial aggregate

• Object hash aggregate
• adaptive sort-based fallback based on JVM metrics

• Sort aggregate
• prefer sort aggregate when data is already sorted
• code generation

• Data source aggregate
• aggregate push down for ORC data source
• efficient statistics collection via file footer

Background: Apache ORC

• Columns are stored separately.

• Rows are divided into multiple
groups.

• File footer stores columns
statistics

• Rows count

• Non-null values count

• Min, max value

Aggregate Push Down for ORC Data
Source

• Use file footer column statistics to short-cut aggregate
processing.

• Example query: SELECT MIN(id) FROM users

• Get min statistics for column “id” in each file footer.

• Aggregate min statistics together.

• No need to process actual rows in files.

• The feature is merged in Spark 3.3. Only work for Data source v2.

• Enable this feature by setting configuration
spark.sql.orc.aggregatePushdown=true.

Efficient Statistics Collection
via File Footer
• Partition/table statistics = Collection(files statistics for the

partition/table)

• Example of partition/table statistics:
• Rows count

• Total files size

• Min, max values of each column

• Accurate up-to-date partition/table statistics is useful for
query optimizer to generate better query plan.

• Traditional statistics collection is a separate job to
reprocess ALL rows from each file. Inefficient and hard to
manage.

Efficient Statistics Collection
via File Footer

• Our solution: statistics collection by only opening files footer

(that’s enough for ORC and Parquet!).

• Eliminate cost of reprocess actual rows in each file.

• Enforce statistics collection automatically right after inserting

to table. Make sure statistics of partition/table is always

accurate and up-to-date.

Thank You
3
1

