
How Pinterest migrated 10,000+ Hive jobs
to Spark SQL

1

Advanced Migrations: From
Hive to Spark SQL

About Me

• Software Engineer at Pinterest working on the Query
Platform Team

• Focused on improving Spark SQL usability and
performance for engineers at Pinterest.

2

Agenda

• Migration Specifics
• Migration Challenges
• Automated Migration Service
• Code Migration
• Changes required to Spark
• Results of the migration

3

Migration Timeline

4

2021

Continuing Migration and Resolving
Blockers

Deprecated Hive and continued to resolve
blockers in migrating jobs to Spark SQL.
Finished the migration towards the end of
2021.

2022

Code Migration

Began migrating jobs in code

2019

Spark and Tez Evaluation

Began evaluating both Spark and Tez

2020

Automating the migration

Begin manual migration while at the same
time working on tools to help us automate.

Migration Specifics

• Hive 1.2.1
• Spark 2.4
• 10,000+ Queries

5

Migration
Challenges

6

Migration Challenges
Testing Queries

• No impact to production
• Syntax compatibility with Spark 2.4
• Validation

7

Migration Challenges
Making Queries Safe

• Tailor
• In house query manipulation library
• Based on sqlparse

8

Migration Challenges
Making Queries Safe

INSERT OVERWRITE TABLE mydb.num_user_events PARTITION (dt='2022-04-20')

SELECT id, count(*)

FROM mydb.user_events

GROUP BY 1

CREATE TABLE ams_sparksql.mydb__num_user_events_42069 LIKE mydb.num_user_events;

INSERT OVERWRITE TABLE ams_sparksql.mydb__num_user_events_42069 PARTITION (dt='2022-04-20')

SELECT id, count(*)

FROM mydb.user_events

 GROUP BY 1

9

Migration Challenges
Syntax Compatibility

CREATE TEMPORARY TABLE temp_table …

CREATE TEMPORARY VIEW temp_table …

10

Migration Challenges
Validation - Output Validation

• Checksum UDF
• Row order agnostic checksum function

• Computed and compared checksum of both Hive and
Spark SQL outputs.

11

Migration Challenges
Validation - File Size and File Count

• Spark output file size <= Hive output file size + 1 gb
• Compression Settings
• Sorting (sorted datasets lead to better compression)

• Spark output file count <= Hive file output count + 1
• Repartition is added to query

12

Migration Challenges
Validation - Runtime and Resource Usage

• Spark runtime > Hive runtime
• Increase number of executors
• Increase size of executors (Memory / Cores)

• Cost of Spark Query > Cost of Hive Query
• Reduce number of executors
• Reduce size of executors

13

Auto Migration Service (AMS)
Architecture

• Help facilitate mass testing of Hive Jobs on Spark SQL
• State machine Pattern
• Built using Apache Airflow
• UI containing report on test results and migration status

14

Auto Migration Service
Architecture - Overview

15

AMS DB

Trigger DAG

Pull jobs in new
state

Query Ingestion
JobPush Queries

State machine DAG

State machine DAG

State machine DAG

AMS Job 2

AMS Job 1

AMS Job 3

Scheduled Query

Check if job is
migrated

Auto Migration Service
Architecture - State Machine

16

new run_sparksql
output_validation

(checksum, output size,
file count)

performance_validation
(runtime, query_cost)

run_hive

run_sparksql

performance_tuning

ready_to_migrate

needs_review

failed

migrated

rolled_back

Auto Migration Service (AMS)
Cluster Resources

• AMS test jobs were scheduled on an adhoc clusters as to not impact
production

• An AMS specific queue is used
• Only 30 jobs were allowed to run simultaneously.

17

Migration Challenges
Failed Jobs

1. Identify error that is causing the most number failures
• All errors were logged into a hive table for easy analysis

2. Fix error
• (optional) Implement failure handler

3. Re-run jobs through state machine.
4. Repeat

18

Migration Challenges
DDL Queries

• AMS is only really useful for DML queries.
• It did not make sense for DDL queries to run through AMS

• Many DDL queries are just metastore operations
• DDL queries do not consume a lot of resource and the runtime is negligible

• Instead we made sure DDL statements behaved the same as Hive
• Syntax compatibility

• Automatically migrated if syntax was compatible.
• Took us two weeks to migrate all DDL queries from Hive to Spark SQL

19

Migration Challenges
Stopping the Inflow of Hive Jobs

Ad hoc Jobs

• Disabled ability to run Hive for most
users

Scheduled Jobs

• Allow list that contains a workflow, job
pair allowed to run on Hive

• Check is made during Hive execution

20

New jobs on Spark

Is Job in
allow list

Run on Hive Run on Spark

NoYes

Migration Challenges
UDF Support

• Most UDFs work fine.
• For UDFs that didn’t work manual changes were required.

• UDFs needed to work on both Hive and Spark SQL until migration was complete.

• Example of changes
• Making UDFs thread safe
• MapredContext

21

Code Migration

22

Code Migration
Why is code migration important?

• Source of Truth
• New engineers working on code may get confused to see a Hive job

running as spark sql.
• Changes to queries overtime may lead to failures that the translator did

not anticipate
• Maintenance overhead of AMS.

23

Code Migration
How scheduled queries are defined at Pinterest

import HiveJob

class TestHiveJob(HiveJob):

 _QUERY_TEMPLATE = """

 CREATE TEMP TABLE …;

 SELECT * FROM …
 """

24

import SparkSQLJob

class TestHiveJob(SparkSQLJob):

 _QUERY_TEMPLATE = """

 CREATE TEMP VIEW …;

 SELECT

 /*+ REPARTITION(10) */ *

 FROM …
 """

Before After

Code Migration
How to make updates to code? - Python AST

• Python AST
• Python AST is lossy
• ASTs are good for tools like compilers and type checkers where the semantics of

code is important, but the exact syntax isn’t.
• Tooling for generating code is lacking.

25

Code Migration
How to make updates to code? - LibCST

• LibCST
• Parsing library developed by Instagram
• Exact Representation of code
• Allows for easy traversal and modification of code
• Allows you to go to from tree to code and vice versa

26

Code Migration
Architecture

27

AMS DB
Find job in code basePull job in migrated state LibCST Transformer Hive to Spark SQL

(Tailor) Create diff

Changes Required
to Spark

28

Changes Required to Spark
Thrift Table Support

• Pinterest has a number of tables
backed by a thrift schema

• Thrift files hold the schema definition
• Single source of truth.

• Uses a custom serde
• Change was made to extract columns

from the thrift serde object inspector.

29

Thrift Changes

struct Name {

 1: required string first_name,

 2: optional string last_name

}

Thrift Schema (source of truth)

Changes Required to Spark
S3 Committer

• AWS S3 Renames are slow
• Updated Spark to use direct committer

• Based on https://github.com/rdblue/s3committer
• On task commit a multi-part upload is started
• On job commit completes each multi-part upload started by tasks

• Updated Hive insert code path
• S3DirectoryOutputCommitter for unpartitioned data
• S3PartitionedOutputCommitter for partitioned data

30

https://github.com/rdblue/s3committer

Changes Required to Spark
CombineFileInputFormat

• Problem with too many small files
• Scanning files takes a long time
• Creates many tasks which can slow down jobs
• Driver needs to keep track of every tasks so many tasks can lead to driver OOMs

• Why not use coalesce?
• Does not respect mapred.max.split.size and mapred.min.split.size
• Coalesce doesn’t balance data size across partitions so you can get skewed

partitions

• Hive has a CombineFileInputFormat that can combine many small files
• Respects mapred.max.split.size and mapred.min.split.size

31

Changes Required to Spark
Decompression Split

• Pinterest has some input formats that are not splittable
• Changing source of data to be splittable was not an option

• Split large compressed files into chunks
• Threshold determined by decompress.split.minsize
• Chunk size determined by mapred.min.split.size

• Record reader forwards to the split start and reads until split end

32

Changes Required to Spark
MSCK REPAIR TABLE

• Hive has the ability to ignore invalid partitions
• i.e part_name=""

• Spark would re-add partitions that already exist on the metastore
• Overload HMS for tables with large number of partitions.
• Exacerbated if many tables were repairing during the same time.

33

Results of the Migration

• Large cost savings
• Runtime weighted speed up of 70%
• Average of 38% reduction in cpu usage
• Average of 61% Increase in memory usage

34

35

Thank you

