
A practitioner’s guide

Unity Catalog
Deep Dive

Ifi Derekli
Field Eng. Manager / UC Specialist

ifi@databricks.com

Liran Bareket
Senior Specialist Solutions Architect

liran.bareket@databricks.com

Zeashan Pappa
Senior Product Specialist - Data Governance
zeashan@databricks.com

mailto:ifi@databricks.com
mailto:liran.bareket@databricks.com
mailto:zeashan@databricks.com

Product Safe Harbor Statement

This information is provided to outline Databricks’ general product
direction and is for informational purposes only. Customers who
purchase Databricks services should make their purchase
decisions relying solely upon services, features, and functions that
are currently available. Unreleased features or functionality
described in forward-looking statements are subject to change at
Databricks discretion and may not be delivered as planned or at all.

2

Agenda
• Upgrading Users/Groups to UC

• Identity Federation
• Roles & RACI Chart

• Upgrading Metastores to UC
• Metastore Topologies
• Managed/External Data Sources

• Upgrading Workloads to UC
• Cluster policies
• Job execution

• Integrating with UC
• Using the REST API
• Lessons from our Partner - Privacera

Unity Catalog -
Recap

Cloud Storage
(S3, ADLS, GCS)

Unity Catalog - Architecture

 * Container / bucket

Audit Log

Databricks
Workspace

Account Level
User Mgmt

Storage
Credentials

Metastore

Lineage
Explorer

ACL StoreData Explorer Access
Control

 Unity
 Catalog

* Unity Catalog will support any data format (table or raw files)

✔

User

Upgrading Identity
Management

• Account
• Typically, one per

customer/cloud
• Metastores

(Metadata/ACL/Lineage)
• Principals/Groups

• Workspaces
• Multiple
• Compute

• Clusters
• Endpoints

• Workflows
• Jobs
• DLT

Account Console

Workspace Workspace Workspace

Billing and
usage

Administrators

Users, Service Principals and Groups

Metastore

Account and Workspaces

 Non-ID Fed Workspace ID Fed Workspace

Account Console

Account Users +
Service Principals

Account Groups

Account Users + Service
Principals

Workspace Groups Account GroupsAccount Users + Service
Principals

Account
SCIM APIs

Identity Federation

Who can do what?

• Account Admin - Create Metastores, Workspaces, Manage Users
• NOTE: can effectively access all data

• Metastore Admin - Can create catalogs
• NOTE: can effectively access all data in the metastore

• Workspace Admin - Can create clusters, endpoints, manage users and
groups within the workspace

• Catalog/Database/Table Owner - Can Assign access to other users
• Account User - Can Access a workspace, if assigned

Capabilities Chart

•

Create Metastores Y N N N N

Manage Users and Groups, Assign Groups to Workspaces Y N N N N

Create Workspaces, Assign Metastores To Workspace Y N N N N

Create Clusters, Workflows, Delegate Access to compute Y N Y N N

Create Catalog Y Y N N N

Delegate Access to Data (Can Manage) Y Y N Y N

Access Workspaces and Data Y Y Y Y Y

A
ccount A

dm
in

M
etastore A

dm
in

W
orksp

ace A
d

m
in

C
atalog, D

B, TBL O
w

ner

A
ccount U

ser

Data

Compute

Data and Compute

Identity Onboarding Steps

• All UC workspaces use Identity Federation
• Identify Account Administrator (Azure)
• Enable SSO at the account console (OIDC/SAML)

• Workspace SSO is still required

• Identify Business Groups for SCIM
• Enable SCIM for the Account Console
• Set up service principals for workflows (SPN/MI/Profiles)
• Assign users and groups to workspaces

• Existing relationships will be maintained

• Test federation.

Upgrading
Metastores

1
2

Definitions

● Table / View = collection of data, consists of columns & rows.
● Schema / Database = collection of tables & views.
● Catalog = collection of databases.

LOGICAL

PHYSICAL

3-level namespace: <catalog>.<schema>.<table>;
 E.g. select * from dev.marketing.contacts;

● Metastore = Physical implementation of metadata service. Collection of
catalogs.

● Unity Catalog = centralized security & governance service for your
Lakehouse. Collection of metastores + ACLs + lineage + ….

Catalog / schema / table setup

dev Schema
databases

Tables/
Views

Unity
Metastore

staging

bu_dev

bu_staging

Schema
databases

Tables/
Views

prod

bu_prod

Schema
databases

Tables/
Views

Schema
databases

Tables/
Views

Schema
databases

Tables/
Views

Schema
databases

Tables/
Views

across SDLC
environment
scopes

The catalog level of the
3-level namespace allows
to structure databases
and tables / views
according to technical or
business needs.

across BUs

team_x_sandbox

team_y_sandbox

Schema
databases

Tables/
Views

Schema
databases

Tables/
Views

across team
sandboxes

Catalog+Schema owned by central team.
Usage Grants performed by central team
GRANT USAGE on <catalog>
GRANT USAGE, CREATE on <schema>

Tables owned by team. Grants
performed by teams X/Y.
Teams X, Y cannot share
outside of team

Topology: from Hive to Unity

How do I upgrade the metastore? Simply attach a Workspace
to a Unity Metastore in the Account Console.

Hive_metastore becomes a catalog in the 3-level namespace.

Databricks
Workspace

Databricks
Workspace

Unity Catalog
(Regional metastores)

Databricks
Workspace

Databricks
Workspace

Hive
Metastore

Hive
Metastore

Before UC With UC

Topology: multi-region / multi-cloud UC
Powered by Delta Sharing

● Metastore boundary = region /
cloud (due to latency, cost)

● Use single region Metastore
 for all SDLC scopes and
business units

● Use Databricks-to-
Databricks Delta Sharing
between cloud regions and
cloud providers

Cloud region 1

meta
store

WS
Prd

WS
Stg

Dev cat

WS
Dev

Prd catStg cat

WS Workspace

Cloud region 3

meta
store

WS
Prd

WS
Stg

Dev cat

WS
Dev

Prd catStg cat

Cloud region 2

meta
store

WS
Prd

WS
Stg

Dev cat

WS
Dev

Prd catStg cat

Let’s talk about tables and cloud storage

Does NOT delete data

Custom S3 / ADLS location

NO

More complex

1) R/W to data outside DB
2) Requirements of data
isolation on infra-level

3) Non-Delta tables

External

Deletes data

Metastore’s default
S3/ADLS location

YES

Much simpler

Delta tables

Managed

What’s the difference between Managed
and External tables again?

DROP TABLE

Data location

Performance Optimizations

Management

Best For

RECOMMENDED

Configuring your objectstore

• For your Metastore’s Managed Location use a dedicated bucket /
container that no other service/group/user has access to.

• For External Locations do NOT mount them on DBFS.

(otherwise…)

Upgrading Hive tables to Unity
External tables - use wizard

External
container / bucket

Hive_metas
tore catalog

<new_catalog>
catalog

Metadata copy

No data move

Upgrading Hive tables to Unity
External tables - use SYNC command (coming soon)

• Run multiple times to pull changes from the hive/glue database into Unity over time
• Use a job for long term synchronization

• Use the DRY RUN option to test the sync without making any changes to the target
table.

• Run multiple times idempotently

SYNC SCHEMA hive_metastore.my_db TO SCHEMA main.my_db_uc DRY RUN

SYNC TABLE hive_metastore.my_db.my_tbl TO TABLE main.my_db_uc.my_tbl

Upgrading Hive tables to Unity
Managed tables - CTAS / CLONE (in the future, wizard)

// A. Managed Delta -> Managed Delta

CREATE TABLE <new_catalog>.<new_schema>.<new_table> CLONE

hive_metastore.<old_schema>.<old_table>;

// B. Managed non-Delta -> External non-Delta

CREATE TABLE <new_catalog>.<new_schema>.<new_table> LOCATION <..> AS SELECT * FROM

hive_metastore.<old_schema>.<old_table>;

// A+B. Once fully upgraded and tested, drop hive table

DROP TABLE hive_metastore.<old_schema>.<old_table>;

1

2

3

4

5

6

7

8

DBFS managed
container / bucket

UC managed
container / bucket

Hive_metas
tore catalog

<new_catalog>
catalog

Metadata clone

data clone
DBFS managed

container / bucket
External location
container / bucket

Hive_metas
tore catalog

<new_catalog>
catalog

Metadata copy

data copy

A B

Suggested external location structure
How to store and secure external data

/

users/

shared/

user1/

One Storage Credential reused across
Multiple External Locations

tmp/

user2/

…

tables/

table1/

table1/

Put external tables in
the same bucket in
the same catalog,
one Unique Storage
Credential per
Catalog

Suggested external location structure

● Personal directory for each user. Only user has access via UC
○ CREATE EXTERNAL LOCATION user1loc URL 'abfss://cont@acct.dfs.core.windows.net/users/user1'

WITH (CREDENTIAL team_x_cred);
○ GRANT READ FILES, WRITE FILES ON EXTERNAL LOCATION user1loc TO `user1@company.com`;
○ GRANT CREATE TABLE ON EXTERNAL LOCATION user1loc TO `user1@company.com`;

● Shared tmp directory for all users
○ GRANT READ FILES, WRITE FILES ON EXTERNAL LOCATION tmp TO `team_x`;
○ GRANT CREATE TABLE ON EXTERNAL LOCATION tmp TO `team_x`;

● Best Practice: Minimize # of Credentials and
External Locations:
○ 1 cred / team or bucket
○ 1 location / team or user

/

users/

shared/

user1/

tmp/

user2/

…

tables/
table1/

table1/

How to store and secure external data

Metastore recommendations: summary

● Metastore
○ Create single UC metastore per region per cloud.

■ Leverage Delta Sharing between regions and clouds.

○ Use catalogs to structure schemas & tables per business and technical needs (e.g.
sandbox, dev/prod, BU)

● Tables
○ Use managed delta tables when possible
○ Use the Upgrade Wizard, SYNC, CTAS / CLONE, to upgrade tables

● Object Store
○ Configure managed & external object store locations securely

■ Do a role/access audit to ensure good governance

○ Structure your external locations smartly to minimize credential and location
management

Upgrading Workloads

Unity-enabled clusters
Pre-create or leverage cluster policies

// Example Single-User Cluster Policy
{ "spark_version": {
 "type": "regex",
 "pattern": "1[0-1]\\.[0-9].*",
 "defaultValue": "10.4.x-scala2.12"
 },
 "data_security_mode": {
 "type": "fixed", "value": "SINGLE_USER",
 "hidden": true
 },
 "single_user_name": {
 "type": "regex", "pattern": "(.*)",
 "hidden": true
 },
 "Spark_conf.spark.databricks.
 dataLineage.enabled": {
 "type": "fixed",
 "value": "true"
 },
 "Spark_conf.spark.databricks.sql.
 initial.catalog.name": {
 "type": "fixed",
 "value": "hive_metastore"
 }}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19

20
21
22

// Example Multi-User (user isolation) Policy
{ "spark_version": {
 "type": "regex",
 "pattern": "1[0-1]\\.[0-9].*",
 "defaultValue": "10.4.x-scala2.12"
 },
 "data_security_mode": {
 "type": "fixed", "value": "USER_ISOLATION",
 "hidden": true
 },
"spark_conf.spark.databricks.unityCatalog.
 userIsolation.python.preview": {
 "type": "fixed", "value": "true"
 },
 "Spark_conf.spark.databricks.
 dataLineage.enabled": {
 "type": "fixed",
 "value": "true"
 },
 "Spark_conf.spark.databricks.sql.
 initial.catalog.name": {
 "type": "fixed",
 "value": "hive_metastore"
 }}

1
2
3
4
5
6
7
8
9
10
11

12
13
14

15
16
17
18

19
20
21

Unity-enabled jobs
● Use SINGLE USER policy for JOB CLUSTERS

● Set a SERVICE PRINCIPAL as the OWNER of prod jobs and RUN as that SP

○ NOTE: Workspace Admins can change job ownership and by extension access data
that service principals of the workspace can access

○ Limit Workspace Admin role to required Dev Ops or IT Ops groups only

Demo

Using the REST API
Automating access control management

● REST API provides full operational coverage for Unity Catalog
CRUD Metastore/Catalog/Schema/ACL/Lineage

● Ability to integrate access control management to existing processes
(jira, ServiceNow tickets, jenkins, etc)

● Case in point:

Integrating with
Unity

Don Bosco Durai
Co-founder & CTO, Privacera

Privacera Integration with Unity Catalog
Translate Ranger Policy from YAML format to Unity Catalog JSON format

32

https://your-uc-workspace.cloud.databr
icks.com/api/2.0/unity-catalog//permis
sions/table/sales_catalog.sales_schema
.sales_table

{
 "privilege_assignments": [
 {
 "principal": "emily.hope@acme.com",
 "privileges": [
 "SELECT"
]
 }
]
}

service: databricks_unity_catalog
resources:
 catalog:
 values:
 - sales_catalog
 schema:
 values:
 - sales_schema
 table:
 values:
 - sales_table
policyItems:
 - accesses:
 - type: Select
 isAllowed: true
 users:
 - emily.hope

Unity Catalog

Privacera and Unity Catalog Better Together
Privacera with Unity Catalog brings simpler governance
across any data, any cloud

Data Governance across hybrid
and multi-cloud

 Sensitive Data discovery, fine
grained access management and
encryption across any data

Automated workflows to reduce
data and user onboarding time

 Centralized auditing and canned
reports for security and compliance

Privacera + Unity Catalog

3
3

Metadata and user management
for lakehouse

Access control and auditing for the
lakehouse

APIs to integrate with partner
solutions

Unity Catalog

Flow - Unity Catalog/Ranger/Privacera

3
4

1. Pre-create Tag and Attribute based
policies in Apache Ranger

2. Data is scanned and tagged during
ingest and while tables are created

3. Privacera translates Ranger policies
into native policies by calling Unity
Catalog APIs

4. Privacera reads audit records
generated by Unity Catalog and
pushes it into Apache Ranger

Steps

Data
Ingest

Data
Engineering

Data
Warehouse

Unity Catalog

Policies Audits

2

1

3

4

Demo

For an integration deep
dive, please attend
tomorrow’s session with
Bosco and Zeashan at 4pm -
MOSCONE SOUTH | UPPER
MEZZANINE | 152

Ifi Derekli
Field Eng. Manager / UC Specialist

ifi@databricks.com

Thank you
Liran Bareket
Senior Specialist Solutions Architect

liran.bareket@databricks.com

Zeashan Pappa
Senior Product Specialist - Data Governance

mailto:ifi@databricks.com
mailto:liran.bareket@databricks.com

